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Flexible polymers and thin rods far from equilibrium: Buckling dynamics
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We investigate the dynamics of the classical Euler buckling instability of compressed objects such as flexible
molecular chains and thin rods moving in a viscous medium. We find that flexible chains undergo a coarsening
process self-similar in time. They develop a wavelike pattern whose amplitude and wavelength grow in time.
We relate the buckling dynamics to phase ordering phenomena. The role of the order parameter here is played
by the chain slope with respect to the straight initial chain configuration.
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[. INTRODUCTION strained molecular chain®r thin rods evolve into a final
buckled configuration. There is much interesting physics in

Solids under externally applied stresses and strains exhibibe dynamics of buckling that has been anticipated recently
a variety of instabilities. A classical example is the well-[6,7]. Here we document this by molecular dynamics simu-
known Euler buckling instability of a compressed rod whichlations of a flexible chain of moleculgStethered chain’).
buckles out sideways, if the compressional straiexceeds We find that chain buckling dynamics has the nature of
the critical values.~L~?; L is the length of the rodi1,2].  phase ordering processesich as the growth of ordered do-
Buckling of thin rods and plates is a common phenomenorinains in magnetic systenj8,9] or unstable mound growth
in engineering practice and materials science. Thus, for exn molecular beam epitaxy10—-14. The evolving chain’s
ample, elastic and plastic buckling deformations are majoprofile is like a wave characterized by a wavelength that
effects in currently interesting strain induced morphologicalgrows, via a coarsening process, as a power of time. The
transitions in heteroepitaxially grown semiconductor materi-amplitude (transverse widthof this wavelike chain pattern
als[3]. On the other hand, in complex fluid physics, a buck-also grows as a power of time. The order parameter of this
ling instability of polymerized monolayers of insoluble am- phase ordering process is the chain slope with respect to the
phiphiles adsorbed at the air-water interface was observed igtraight initial chain configuration. Our results were briefly
recent experimentg!]. Buckling can be induced in a variety outlined in Ref[6]. Our effort here is a part of broad recent
of ways, for example, simply by applying a compressionalinterest in the dynamics of deformed objects, such as flexible
lateral strain to a membrane or a long chain of molecules. Ipolymers[13] and tethered membrangd4]. The present
practice, strains causing buckling are frequently of thermawork on chain buckling under compression complements a
origin [5]. Thus protective coating films or oxide scales onprevious study on straightening of polymers under tension
metals may buckle due to the difference in thermal expant15], as well as studies of Goldstein and co-workers on elas-
sion coefficients between the film and the substrate. Rod&hydrodynamics of filamentsl6,17. Finally, we note that
with hinged ends immersed in a fluid may buckle if the tem-the buckling dynamics of tethered membranes was also re-
perature of the fluid is raised. The temperature jump wouldently studied by two of us in Ref7].
expand a rod with free ends. It thus effectively induces a The balance of our paper is as follows. In Sec. I, we
uniform compressive straia in a rod with fixed ends. I discuss the model for the flexible molecular chains. In Sec.
>g.~L "2, such a thermally strained rod will buckle. Ill, simulations of the overdamped buckling dynamics of

Historically, Euler's buckling instability is the very first molecular chains are presented. In Sec. IV, we propose a
example of bifurcation phenomena, and a paradigm for subscaling theory of the buckling dynamics. Section V discusses
sequent theories of phase transitigfig In itself, buckling ~ chain buckling dynamics as a phase ordering process. In Sec.
involves a spontaneous symmetry breaking. Thus a comV!l and the Appendix, we discuss inertial and noise effects on
pressed membrane may buckle either up or déweaking  buckling dynamics. A summary and a discussion of related
of Z,, Ising-type symmetry whereas a compressed thin cy- work are contained in Sec. VII.
lindrical rod or molecular chain may buckle out sideways in

an arbitrary directior(breaking of theO, symmetry for ro- Il. MODEL OF FLEXIBLE MOLECULAR CHAINS
tations around the initial direction of the ro&o, buckling is .
a practically interesting analog gfhase ordering phenom- ~ We focus our study on thin rod4,2], and closely related

ena In this paper, we investigate the fundamentals of bucklong flexible chains of moleculdd.3]. In Fig. 1(a), we sche-
ling dynamics, that is, we investigat®w initially straight, ~ Matically depict a section of the flexible chain of molecules
that we investigate in this paper. Hdﬁg is the position of
the nth molecule along the chain. The potential energy for
*Present address: Department of Physics, Harvard Universitythe interactions of the particles along the chain contains two

Cambridge, MA 02138. terms: the usual nearest-neighbor bonding téoompres-
"Present address: Materials Science Division, Argonne Nationagional energy as well as the next-nearest-neighbor terms
Laboratory, Argonne, IL 60439. yielding the chain bending energy. That is,
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(a) A Other forms of the bonding potential can be approximated
y by Eqg. (2.4 in the vicinity of their minima ate,=0. As

R R, 7 discussed in the following, the scaling behavior of the buck-

4] ling dynamics is, at long times, dominated by chain configu-

rations for whiche,—0 ast—~. Thus it is good enough to
use the above simple model of the formdf In the molecu-

o lar dynamics simulations that we present hé8e; 2.0 and
xk=0.2.
t=20
I1l. MOLECULAR DYNAMICS SIMULATIONS
& OF BUCKLING DYNAMICS OF FLEXIBLE CHAINS

OF MOLECULES

=100 The dynamical model studied here is the standard over-
damped Rouse dynamics. This dynamical model basically
corresponds to the motion of the molecular chain in a vis-
cous medium, described by Langevin equations of motion:

t=300

drR, U _
r =——+ (). 3.1
dt IR,

Here Iin is the position of theath molecule along the chain,
I" is a viscous friction coefficient, ang,(t) is the thermal
noise. To describe the chain dynamics, let us split the posi-
tion vector of thenth moIecuIeFQQn into the transverse part
FIG. 1. (@ The model of the flexible molecular chaith) The IiT(n,t) (“undulations™), perpendicular to the initial straight
time evolution of the molecular chain. We depict 550 out of 10 000chain direction, and the longitudinal paef (n,t), along the
molecules comprising the chain. To depict undulatidhgn,t) initial chain direction. Chain ends are fix¢dinged, and at
clearly, we used different scales for the transveRse=(R,,R,) =0 the chain was in a precompressed, straight configura-

and longitudinalR_ = R, molecular coordinates. tion. That is,R, (n,t=0)=(1—¢)n, and ﬁT(n,t=0):O_ In
our simulations, we used a 10% compressional external
U=U com™ Upend: (2.1 strain; that isg=0.10.
Here we focus on the dynamics without thermal noise
with the compressional energy (* zero-temperaturedynamics), i.e., we set,(t)=0 in Eq.

(3.1), whereasl'=0.5. Noise effects are discussed in Sec.
_ 53 VI. The only randomness used in this section was small ini-
U°°m_§n: P([Rn+1=Ra)) 22 tial random transverse displacements around the initially
straight unstable equilibrium configuratigto enable chain
and the bending enerdgiven by a ferromagneticlike inter- start moving. Subsequently, buckling instability, due to
action between the nearest-neighbor bond vectors in Figiegative internal strains, amplifies transverse displacements
1(@] and produces a chaotic dynamics depicted in Fig) from
our simulations. Manifestly, the transverse displacements of
_K e e the chainR (n,t) develop arevolvingwavelike pattern char-
U =2 (thii—t)2 2.3 Al
bend_Zg (ta+1~tn) 23 cterized by aime-dependenstructural length scala (t)
(“wavelength”). This\(t) grows with time via a coarsening
Here, fn=(§n+1—§n)/|§n+1—§n| are the bond unit vec- process. Associated with this coarsening is a growth of the
tors, andx is the chain bending rigidity modulus. The bond- chain’s transverse spread(t) (“width” ); see Fig. 1b).
ing potential(b(|l§n+1—§n|) in Eq. (2.2) is minimal when We quantified the chain transverse spreaf) as the

- o . . root-mean-square value of the transverse molecular displace-
le?glwlzntlsseequal to the bond lengthl, in the units used ments, that is, as

B B w(t)12=([R:(n,H)]3). 3.2
B(|R, R = Ce 2.4 [w(t)]°=([Rr(n,)]%) (3.2
Here and in the following(- - -) stands for the spatial average
whereB is the compresibility modulus, arg}, is theinternal ~ defined for any quantity A(n,t) as (A(n,t))
strain defined as =(1/N)=)_,A(n,t), for a chain comprised dfl molecules.
We extracted the chain wavelengtlit) from slope-slope
en=|F3n+1— §n| -1 (2.5 correlation functions, that have a strong oscillatory character
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FIG. 2. (@) The slope-slope correlation functiokg(r,t) vsr
for various timeg. Note that ag— o, K {r=0;t)—2¢ (=0.2 here,
£=0.1). (b) The self-similarity test foK {r,t) shows the collapse
into a single curvey=(x) of the curves in(a). Here y
=K{r,t)/K{r=01t) andx=r/r(t), wherer(t) is the first zero
of K{r,t).

reflecting wavelike patterns in Fig(ld). We illustrate this in
Fig. 2, that depicts the “slope-slope” correlation functions
defined as

FIG. 3. (a) The time evolution of the displacement-displacement
difference correlation function&(r,t) of the flexible molecular
chain. (b) The rescaled displacement-displacement difference cor-
R R relation functions. All of the correlation functions collapse into a

Ksdr, ) =(Vr(n+r,t)-Vi(n,t)), (3.3 single curvey="f(x). Here y=K(r,t)/Kmna(t) and x=r/r 1),
whereK ,.(t) is the maximum value oK(r,t) which occurs ar
where V.(n,t) =Rr(n+1t) —R(n,t) is the slope vector. =rmafl).
These correlation functions, as well as the displacement-
displacement difference correlation functiokqr,t), de- 1 1
fined as Upend t)~ o Ucon(t) ~ 7 (3.6

K(r,t)=([Re(n+r,t)—Re(n,t) ]2 (3.4  with §=0.50(4) andy=1.022). As > &, the net potential
(elastig energyU is, at long times, entirely in the bending
have an oscillatory character in tmedependencésee Fig. energy,U~UpeneUcom: See Fig. 5a).

3). Figure b) depicts the time evolution of the spatial aver-
The chain wavelength(t) can be extracted from the first age of the internal straig,(t) [Eq. (2.5)]. It is important to
zeror(t) of K {r,t), via the relation\ (t) =4r(t) [which notice that(e,)<0, indicating that the chain is in a com-
can be rationalized by calculating(r,t) for Ry(n,t) inthe  Pressed state at any timeBy Fig. 5b) for long times, the

form of a simple harmonic wave with wavelengtkit)]. Wwe  internal strain relaxes as
thus find that, at long times,

~—=, 3.
w(t)~th,  N(t)~t"e (3.5 (€n) t” @7
(see Fig. 4, with the exponents3 and n, both equal to With ¥=0.51(1). Note that, within the accuracy, one has the

0.25+0.01 from simulations of a three-dimensional chain ofScaling relation; =2y, wherexis the exponent of the com-
N=10000 molecules. Thus, within the accuragy=n. pressional energy decay; see KE§.6). This can be easily

_1 rationalized agJ .o~ (e?), if one further assumes thée?)

4 . - S . . . 2

We obtain additional insight into this scaling behavior by ~{€n)*. o _ _ _
considering the chain’total potential energyJ [Eq. (2.1)], The most apparent finding from these simulations is the

which is the sum of the compressional eneidy,, and  Presence of the growing length scale¢t) and A(t). The
bending energyJ.ng- Figure 3a) depicts the energied, t}/plcal length scale for chain transverse displacements
Ucom @ndUpeq VS time. We see that, at long times, Rt(n,t) is w(t). Likewise, the typical length scale faris
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FIG. 4. (3) The time evolution of the transverse widt(t) of Y =Ubend" Ucom, bending energyyengand compressional energy
the chain. The log-log plot gives the scalimgt)~t%25. (b) The Ucom- (b) The tl_me evolution of the internal strai(t). Note that
time evolution of the first zero crossing(t) of the slope-slope  &(t)<0 for all timest.
correlation functiorK {r,t). As discussed in the text;(t) is one . _
quarter of the chain wavelengtt(t). The log-log plot gives the Ry(n+r,t) RT(n,t)‘

scalingA (t)~1°%25 The linear plot indicates that(t) starts from a w(t) w(o) | (3.9
nonzero value at=0 as discussed in the text.

can be expressed as a functionrék (t). Therefore,
the chain wavelengtia(t), which reflects the periodiclike
structure[see Fig. 1b)] of Ry(n,t) versusn with the period K(r,t) il (3.10
A(1). w(t) (1) '

There is an apparergelf-similarity we see in the chain _ _ o _
dynamics. Indeed, from Fig.(), we infer that chain con- for long timest. Thl§ self-similarity Can-be tested by pllottlng
figurations obtained atifferentlong times look(statistically ~ the rescaled quantity=K(r,t)/w(t), with K(r,t) obtained
the same provided the transverse displacemeRign,t) are &t various times, versus the rescaled quantityr/A(t). If
expressed in units of(t) [i.e., in terms of the “dimension- the self-similarity holds, all curves thus obtained should
less” quantityRr(n,t)/w(t)], andn is expressed in units of “ collapse’ |_nto a smgle scaling func'qory:f(x_). We did in
\(t) [i.e., in terms of the dimensionless quantityx (t)]. fact test this, by using the correlation functiokgr,t) ob-

Qualitatively speaking, one can say that the chain configural@ined at different times in Fig.(8). Already from Fig. 3a),
tions depicted at various times in Figb] are all of the form W€ S€e€ that these correlation functions, though obtained at

different times, look similar in shape and may collapse into a
n single curve after a rescaling. For convenience, we did this
277—); (3.9 rescaling by usingy=K(r,t)/Kpa{t) andx=r/r{t). Here
A Kmadl) is the maximum value oK(r,t) which occurs at
) . ) . some value of =r,,(t). If the self-similarity holds, all the
that is, y=Ry(n,t)/w(t) is a wavelike function ofXx  cyrves thus constructed should collapse into a single curve
=n/A(t), with the periodAx=1. Statistical self-similarity y = (x), whered is a scaling functiofid is identical tof in
can be checked by using the slope-slope correlation funceq, (3.10 up to a simple rescalifglt appears that this is the
tionsK{r,t) obtained at various timeysee Fig. 2a)], and  case, as documented in FighB[note thatd(1)=1, by the
the displacement-displacement difference correlation funcgefinition of the rescaling proceddréherefore, the statisti-
tions K(r,t) [see Fig. 8)]. In terms of the displacement- c3| self-similarity of the flexible chain buckling dynamics is
displacement difference correlation functidf(r,t) [Eq.  well confirmed by our simulation results.
(3.4], which, in essence, measures the typical value of An additional check of the self-similarity can be made by
|Rr(n+r,t)—Ry(n,t)|, the statistical self-similarity means considering the slope-slope correlation functipgs. (3.3)]
that the typical value of obtained at different times; see Fig@2 The slope vector

RT(n!t)

WD ~Sin
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V.(n,t)=dR;/dn has the characteristic valuev(t) [10-12).Inthe MBE growth as well as in the present elastic

=w(t)/\(t), inferred by looking at a typical chain configu- Problem, the evolving manifol@surface or ling develops a
ration in Eq. (3.8). In the spirit of the statistical self- nonzero slope with respect to the initial straight configura-

tion. The chain slope plays the role of the order parameter in
this phase ordering process.
The similarity of the present problem to the MBE pyra-
Kd1,t) r midal growth is also reflected in the form of the
> = SQ( ) (3.1) displacement-displacement difference correlation function
Vi) D) K(r,t). This function behaves similarly to the height-height
. : . . difference correlation function during the pyramidal growth.
wherefs{x) is a scaling function. In particular, Indeed, for <\ (t), we see from Fig. 3 thd{(r,t) is nearly
= alinear function ofr. That is,
T

2
. IR )
Kedr=0t)={((Vy) >=<(&—n) >=v (1)fsd0). K(r,t)~re, (3.13

(3.12

with a=1. On the other hand, far>\(t) the correlation
From the simulations, we see that{r=0;) saturates to a function K(r,t) saturates, in an oscillatory fashion, to the
finite value at long timegsee Fig. 2a) atr =0]. This feature  value K(r =,t) =v2w(t). Features such as=1, and an
of the slope-slope correlation functions can be rationalized ipscillatory behavior oK (r,t), also occur in the MBE pyra-
terms of Eq.(3.12 asv(t)=w(t)/\(t), andw(t) and\(t) midal growth[10—-12,.
are both~t%% at long times. This is further discussed in  Let us discuss the numerical prefactor in E8.13. By
Sec. IV, where we find(;{r=01)=((dRr/dn)?)~2¢ for  writing Re(n+r,t)—Ry(n,t)=r[dRr(n,t)/dn]=rV(n,t)
e<1, at long times. Thus the self-similarity &f{r,t) is [r<A(t)], and from Egs(3.3) and(3.4) we have
simply the statement that, at long times, all the curves in Fig.
2(a) are identical up to a time-dependent rescaling along the 2012\ 2
r axesonly. The dynamics of correlationk (r,t) of the K(r,t)=[Ker=00]"r= n r 319
slope vectoV:=dR;/dn is thus identical to the dynamics
of order parameter correlations in the phase ordering profor r<\(t). As noted abovésee Eq(3.12], the prefactor of
cesseg$8,9] with the chainslope Vr playing the role of the I in the Eq.(3.14 saturates at long times to a constant. In
order parametehere. Indeed, the scaling form Kt (r,t) in  fact, in Sec. IV, we show the{ {r =0t=)=K(e), with
Eq.(3.11) is equivalent to the basic scaling form of the orderK(g)=2e, for e<1. Thus, forr <(t),
parameter correlations in the phase ordering procd8séls
Figure 2b) gives the basic test of the self-similarity of K(r,t)~VK(e)r. (3.19
Ks{r,t), as suggested in Eq3.11). There we plot ) )
=S|2(54r),t)/Kss(r=gg,t) Vs x=r/?(l(t)£4r/)\(t) [as t?eforye, On the other hand, by using the scaling for(3s10 and
r,(t)=\(t)/4 is the first zero oK.{r,t)]. We see that the (3-11, for r<x(t),
slope-slope correlation functions obtained at various times W
indeed collapse into a single scaling functign= /(x) K(r,t)~C—r; (3.16
[4(0)=1 andy(1)=0, by the construction of the rescaling A

proceduré Moreover, as to standard phase ordering phe- Y . .
nomena, our scaling functiog(x) has a pronounced oscil- N€reC="1'(0)=f{0) is a numerical constant. From Egs.

latory character reflecting the presence of the structurdi3-19 and (3.16, w/A=[VK(&)/C]. As K(&)=2¢ for &
length scale\ (t). <1 (see Sec. I, one hasV;=dR, /dn~w/\~ e, for a
Our simulations thus elucidate the nature of the classica¥malls. _ _ _
Euler instability dynamics of a precompressed rod. It is a !N Sec. IV, we will address the dynamics of the buckling
coarsening process characterized by a growing structurdpstability by a scaling-type analysis. This yields, for ex-
length scale\~t". At long timest~L, this length scale ample, the coarsening exponents=3=0.25 for the chain
becomes comparable to the rod lengttand then one recov- Puckling dynamics in the presence of the viscous friction, in
ers the usual picture of a buckled flexible chain. We find thaggreement with the results of the numerical simulations of
the dynamics of the buckling instability has the nature of athis section.
phase ordering proce$8—11]. It is a stochastic coarsening
process statistically self-similar in time. As in phase ordering IV. SCALING THEORY OF THE BUCKLING DYNAMICS
phenomena, stochastic dynamics here is produced by chain OF FLEXIBLE CHAINS OF MOLECULES
nonlinearities and the presence of many degrees of freedom . . —
rather than by thermal noise, which we switched off in the To explain our nu_mencal result.s qualitatively, !et us ad-
simulations presented in this section. Associated with thisdress the chaln mothr_1 by a scaling-type analysLs. To pro-
coarsening process is the growing transverse width of the rogeed, we split the position vector of théh moleculeR(n,t)
w(t)~t#, with B=n.. Such a growth ofv(t) with B=n, into one Iongltudlnal componef®, (n,t) and two transverse
makes buckling dynamics strikingly similar to the interfacial componentsR+(n,t) (“undulations”), along and perpen-
coarsening processes recently found to occur in moleculaticular to the initial straight chain configuration, respec-
beam epitaxyMBE) (so called pyramidal or mound growth tively. Next we introduce phononlike degrees of freedom.

similarity, ~correlation of Vi(n,t)/v(t) with V(n
+r,t)/v(t) should be a function of/\(t) only; that is,
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This can be done, for example, by expanding around the g . 9% . a\4.
relaxedstraight chain configuration, by writinB, (n,t)=n FERT(n1t)~_BSOf,_nZRT(nvt)_K<é,_n> Rr(n,t).
+u(n,t). Alternatively, by expanding around the initial, 4.9

precompressedtraight configuration, we obtain another ex-
pressionR, (n,t)=(1—e)n+u’(n,t), wheree is the exter- o £q (4.8), we find harmonic wave modes of the form
nal compressional straifior example,e =0.10 in the simu- Ry(n,t)~Re exfiw(K)t+ikn), with [w(k)=Bek?— k%
lations results of Sec. I)l As_ Fhe chain has fixed ends, we Thus all the modes wittk<Be/x are unstable and will
h the bound dition®R (N,t) = (1 N d
Ravg _% oundary Co? r']'orf h( ’ )_(, _8)_0‘1” grow exponentially in time. The dominant, most unstable
1N G, This can, atermatively, be expressed a5 MOUELMAXMizing (] hask~ky— (Be/2x. The ampl-

N e ' y: P tude of this mode grows exponentially in time as gy

au’ with

() o o
where, as in Sec. I, the average-) indicates the spatial w (ko) 4k
average, defined for the quantitA(n,t) as (A(n,t))
=(LN)SYA(n,t)dn. In contrast tou’(n,t) phonons, the The wavelength of the fastest mode,
u(n,t) phonons satisfy a more complicated boundary condi-
tion atn=N, of the formu(N,t)=—¢N, asu(n,t)=—ne 2m 2k
+u’(n,t). Thus(du/dn)= —e. In terms of the phonons and )‘O:k_oz ™N Bg’ (4.10

undulations, the internal straii2.5) has the form

2 corresponds to the chain wavelength observed in our simu-
) 4.2 lations at the early stage of the evolutitsee Fig. 4b) att
~0; the initial wavelength is different from zekduring the
early stage,t<ty, the internal strain is negativee(n,t)
for small external straing<1 considered here. Alterna- ~—¢,  as noted abovelt will remain negative even during
tively, asd,u=—e+d,u’, the subsequent, late stage fert,, as discussed in the fol-
L lowing [see Eq.(4.19], and already documented by the
au" 1 ( aRT) simulations in Sec. lll; see Fig.(B). Thus the buckling dy-

~—t = —
e(n,t) n

1Ry
on 2

e(nt)~—e+ a_n+ 2\ on (43 namics is, generally, driven by negativt@mpressionalin-
ternal strains. As the times goes on, the linearized theory
In terms of phonons and undulations, the chain elastic poterf4.8) breaks down, and the nonlinear equation of motion
tial energy reduces to (4.7 [with e(n,t) as in Eq.(4.3)] must be considered to
explain the most interesting results obtained from the simu-
U=U com™ Upend: (4.4 lations of Sec. Ill, such as th@ower-low growthof A (t) and
w(t) at long time scales. The early time behavior, with
with N(t)=N\g and w(t)~expt/ty), is, at long timest>t,, re-
N B placed ﬁby a power-law growth of the form(t)~t"e and
— - 2 w(t)~t~.
Ucom= J; dn 2 (e(n,n) 4.5 To explain our numerical simulation results for the expo-
nentsn, and g of these power laws, we address the nonlinear
and equations of the chain motion by a scaling-type analysis. It is
based on the observation that the only characterlstig
Nk azﬁT 2 length scalest long time tareA(t) andw(t), as suggested
Upend= fo dnz\ 5z (4.6)  py the simulations of Sec. IlI, in particular by the collapse of
the correlation functiongsee Fig. 2b) and 3b)]. These
simulations suggest that the typical scale Raris w, there-
fore, Rr~w. Likewise, the typical scale fon is \, son
~N and d/lon~1/\. Thus, for example, dR;/dn
~w(t)/\(t), for a typical configuration of the chain, as
FiﬁT(n,t):— ou =iBe(n,t)iF?T(n,t) cl_early suggested by our simulatiopsee Fig. 1b)]. Like-
at SRy(n,t) N an wise, we have

1%
— x| —
on

here, as in Sec. Ill, we switched off the thermal noise. At thefor the typical value of the left hand sideHS) of the non-
early stage of the chain evolution, E4.7) can be linear- linear equation of motio4.7), whereas the bending term on
ized, by approximating Eq4.3) with e(n,t)~—¢. There-  the right hand sidéRHS) of Eq.(4.7), x(d/dn)*Rt, behaves
fore, as

Next, let us focus on undulatiori%T(n,t), which, by Eqgs.
(3.1, (4.4, (4.5, and(4.6), satisfy

IRt w

Rr(n,t); 4.7 r—=~r+ (4.11)
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w
(bending tern)1~KF. (4.12

Likewise, the first, compressional term on the RHS of Eq.

(4.7) behaves a8(1/A)e(1/\)w. Therefore,

(4.13

ew
(compressional terin-B e
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for t>t,. These results foe andU.,, are in perfect agree-
ment with our numerical simulationgsee Egs.(3.7) and

(3.6) and Fig. §.
aﬁT)z
W .

From Egs.(4.1) and(4.3),
(e)=—e+
By using heredR/dn~w(t)/\(t), and Eq.(4.18), we find

(4.22

!

To proceed further, we assume that, in the late stage of thgat

evolution, fort>t,, the compressional and bending terms on
the RHS of Eq.(4.7) are of the same order of magnitude.

Thus both terms are of the order of the LHS of E47), that
is, they are of the ordeFw/t; see Eq.(4.11). From Egs.
(4.12 and(4.13, we thus have

w

w lelw

1

_8+§

2
W(t)) _ l 4.23

NO] T BA(1)?

after dropping inessential numerical factors. From B23),
we see thaw?=2e\2—2«/B, or, ask/B~g\3,

—=xk—=B—F. 4.1
t N2 (419 w2(t)=2e[A4(t)—\2], (4.24)
From Eq.(4.14, we see that where) is the wavelengtfiEq. (4.10] found before for the
£\ /4 early stage of evolutiont<t,. At long times,t>t,, one has
)\(t)=(K—) ~tla 4.15  Mt)>\o [see Eq.(4.17]. Therefore, at these long time
r scales, from Eq(4.24),
ThusA(t)~t"e, with W(t)%\/Z)\(t). (4.25
nC=E=0.25, (4.16 As \(t)~t"c, it follows, from Eq.(4.25, thatw(t) ~t#, with
4 the exponent
in perfect agreement with the numerical simulation result for 1

n; in Sec. lll; see Fig. ). From Egs.(4.9) and(4.10, Eq.
(4.15 can also be rewritten as

1/4
No.

t
to

(4.17

)\(t)=(

Equation (4.14) also implies that the internal straie
= —|e| behaves as

e=— %2. 4.18
By using Eqs(4.9), (4.10, and(4.17), here
e=—¢ % 2:_8<tt_o) 1/2. (4.19
Thus the internal strain decays as
1
e~ — ﬁ (4.20

Therefore, the early regime, witt~ —¢ for t<ty is, fort
>1,, replaced by a power-law decd¥q. (4.20], of the
negative internal straire that drives the dynamics of the
buckling instability. By Eq.(4.20, we see that the compres-
sional energy[Eq. (4.5] U~ NB€/2~e? decays with
time as

1

u com ¢

: (4.21

B=nc=7. (4.26
in agreement with the result obtained by simulations in Sec.
1.

The scaling behavior of the bending eneldiq. (4.6)],
numerically obtained in Sec. I(lsee Fig. $a)], can be now
explained. Note that

NK 82§T 2 w 2 2
[ — = J— ~ 574"‘0
<Ubenc> 2 <( anz) > NK<)\2) t .
(4.2
Thus, from Eq.(4.26),
1
Ubenc{t)"‘ﬁ1 (4-28)

in agreement with our simulatiofsee Eq.(3.6), and Fig.
5(a)] at long timest>t,. We recall that for early times
<ty the chain is nearly straight, andl,.,qis small. As the
time increases, the chain buckles adg,,q rapidly (expo-
nentially with time@ increases at early timdsee Fig. %a)].
Upeng reaches its maximum dt=ty. Finally, for t>ty the
bending energy slowly decays as/i/ as documented in the
numerical simulations in Sec. Il and derived analytically
above from the scaling theory.

As (e)—0 at long times, from Eq4.22),

(5] )-=

(4.29
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for t>ty. As V(n,t)=0dR;/an, from Egs.(4.29 and(3.3) U is the sum of the bending and compressional contribution,
we find that, at long times, the slope-slope correlation funcu= Upgngt Ucom, With ubend:(;</2)((92I§T/(9n2)2 and Ucom
tion (3.3) saturates at its origin to the value given by =(B/2)e? [see Eqs(4.5 and (4.6)]. By usingu=~upengin

Eq. (5.3, [@S Upeng Ucom at long times; see Sec. ]lland
((aRy/at)?)~ (dw/dt)?, we find

e (]

oR;\? )
<—T) >=<<VT)2>=K(8>, (4.30

Kedr=0t)= n

T gt Ybend™ ~ | gt (5.9

with K(g)=2¢ for ¢<1. This saturation is also clearly
documented by the numerical simulation resultskqgr,t)

in Sec. lll[see Fig. 2a)]. Fort>t,, slope-slope correlation
function can thus be written as

at long times. To proceed, we employ the phase ordering
form of the order parameter correlations in £§.1), to find

that
r - -
Kss(r,t)=K(s)l//(W>, (4.31) Np N7\ VA=) pr[ M2 5.5
ang  an, N2(t) S Oa(t) ) '
wherey(x) is a scaling functior /(0)=1], as discussed in - grom Eq. (5.5 it follows that the average bending energy
Sec. Il density is
V. BUCKLING DYNAMICS AS A PHASE ORDERING k[ [2Re\2\ k[ [avq)? KV2(0)
PROCESS Uend=2\ | 50z | [ =2\ %n | | =S 2220

In this section, we present an analytic approach to the

ghqin buckling d)l/tnamictsh Bugkli?g dtyr&aLnics is Ia phasehor-Here C=—1f7{0) is a numerical constant. By combining
ering process. It can thus be treate employin a : ;

order?ng theories developed to explain p>r/1ase porgeri%gp pro- as.(5.6) and (5.4), with w(t) =V(=)A(t), we find
cesses such as the growth of ordered domains in magnetic 1 d
systemd8,9]. In our case, the order parameter is the chain ==
slope vectoN;=dRr/dn, whereas the size of the ordered
domains is comparable to the chain waveleny(t): at  The differential equatiori5.7) is easily integrated, yielding,
scales shorter than(t), the chain is nearly straight with a at long times,
constant slope, whereas at scales longer @i the chain

curves and the orientational order Wf is lost [see Eq. w(t) =)\(t)=cons(—) He (5.8
(3.11) and Figs. 1 and R In the following we use this fact to V() r; - '
develop a phase ordering theory of the buckling dynamics.

Our approach here is similar to a recent theory of Bigly ~ Thus w(t)~A(t)~t¥% as well as[by Eq. (5.6)] Upend

Basic ingredients of the phase ordering theory are the follow=- 1/\2~1/\t, in agreement with the corresponding results

K VA() 2

2\

): —const\/z(oc)<((jj—): (5.7)

ing. of Sec. IV.

(i) The fact that the chain slopé;=dR;/dn is an order Thus the phase ordering theory explains the observed val-
parameter here, with the correlations of the phase orderingeS of the coarsening exponents, both for the buckling dy-
form [9], namics of molecular chains and ro@ss discussed aboye

and for the buckling dynamics of tethered membraftes
discussed in our work7]). We note that the buckling dy-
), (5.2 namics of tethered membranes and thin sheets is character-
ized by coarsening exponents that are different from those of
. . . ) molecular chains and thin rods. The major reason for this
as found from our simulationgsee Eq.(3.1],1 and Fig. & difference is the phenomenon of elastic energy localization,
here  f{0)=1 and  V(®)=\([V(t,n)1*)i==  that occurs in the case of membrafigs but does not occur

ny—n;
A(1)

<\7T(n1,t)'\7T(n2=t)>:V2(°C)fss(

= (£()/N ()= [V(*) =26 for e<1; see Sec. IY. in the case of flexible molecular chains. In buckling mem-
(ii) The energy dissipation formula, branes, the elastic energy is localized on a smaller portion of

the net membrane surface, occupied by a network of highly

curved regiongridges [7]. In contrast to this, in buckling
) (5.2 chains, there is no such energy localization, that is, the elas-
tic energy is nearly uniformly distributed along the chains. In
fact, Eq. (5.5 reflects the fact that the chain curvature is
nearly uniformly distributed along the chain, i.e., that there
are no highly curved, cusplike turns consuming large
amounts of bending energy. Under this conditioa(t)

52 ~w(t) is the only length scale of interest here. The chain

1 du <(aRn) >

du 2

1dU %(aﬁn
rdt &\ ot

implied by the equation of motio(8.1); hereU is the chain
potential energyEqg. (2.1)]. In terms of the energy per par-
ticle u=U/N, Eq. (5.2 reads

(5.3 bending energy density can be then estimated simply as
' k(d?R/dn?)?~ k(w/\?)2, which is equivalent to Eq(5.6)
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[by recalling thatw(t) =V ()X (t)]. Such a simple estimate coarsenindlike inertial effects, as discussed abg¥d o ad-
breaks down for buckled tethered membranes due to the fodress this question, let us compare, in the spirit of the scaling
mation of ridge networks. There, essentially all elastic en-analysis of Sec. IV, the noise term and the viscous term in
ergy is localized within the ridges’ width~\??), which is  Eq. (3.1), by forming the ratio
an additional length scale of interest for coarsening process.

In effect, tethered membranes have a different coarsening _ 7
exponent\ (t) ~t", with n,=3/11 rather tham.=1/4 [7]. Q= dR 2: 6.3
We remark that, for membrane buckling dynamics, mem- hbil
brane slope correlations also have the phase ordering from dt
[Eqg. (5.1)]. However, for the tethered membrane case, the ) o )
(asymptoti¢ scaling functionf «in Eq. (5.1) has a cusp at the In order for thfa noise to be |n§|gn|f|car@,|n Eq. (6.3) must
origin [i.e., the constan€ in Eq. (5.6) is infinite]. This sin- e small. During the coarsenindRy/dt~w/t, whereas the
gularity reflects the presence of sharp domain walls, i.e.Scaling of the noisen can be found from its correlation
ridges across the surface of membrésee Ref[9] for simi-  (7(M.1)7(0,0))=2I'kgT&(n) &(t). As (1)~ 1t and o(n)
lar situations in other phase ordering phenomema the ~ ~1/M~1/A, we find 7 ~TkgT/AL. Thus, from Eq.(6.3),
case of molecular chains, collapsed slope-slope correlatioR = (TksT/At)/(Tw/t)?. By expressingt and w here in
functions do not have such a cusp at the origin, as docuterms of the chain wavelengi(t), by means of Eqg4.15),
mented by our simulatiorfsee Fig. 2b) atx=0]. Thus, for ~and(4.29, we find

2

molecular chains, the constaitin Eq. (5.6) is finite. Physi- NG
cally, the absence of this cusp in correlations indicates the Q(t)= , (6.4)
absence of highly curved, cusplike turns in the chain profile. N max
with
VI. INERTIAL AND NOISE EFFECTS
K
In light of our results, here we first discuss some other Amax=st=sﬁ. (6.5
B

issues related to the dynamics of buckling instabilities. We
address inertial and noise effects ignored in previous discuqqerel_p is the thermabersistence lengtbf a free chain at

sions, by considering the Langevin equation the temperaturd. Thus, as long aa (t) <\ pa=el,, one
ot - hasQ(t)<1, and the noise can be ignored. The chain dy-
merFﬁ: _ ﬂJr 5 (1) 6.1) namics is then qualitatively the same as the oné=a0 that
dt? dt IR, Tkt ' was described in previous sections. Obviously, the condition

Q(t)<1 will be violated at long enough time>t,,,, With

which incorporates the effects of the molecular mas§or  tmax defined \//iaQ(tmax):]-r i.€., X max=Mtma) = (ktmax/T)"*

transverse displacemeris one would then obtain E¢4.7), = )\O(tmax/_to)_l *[see Egs(4.15 and(4.17]. Thus, generally,
with the LHS modified by the inclusion of the inertial term if the chain islong enoughwith N>\ 5, the noise will be
m(dzﬁT/dt2). In the spirit of the scaling analysis of Sec. IV relevant and start to dominate for-t,,.. Note, however,

[see, eg., Eqi4.1D)], we find that L, diverges asT—0, and\ o=l may thus easily
exceed the rod sizN. This is the case in any common me-
d?R; w(t) chanical engineering situation involving rodlike structures.
mW mt_2 m/T There, the rod persistence lendtp is, in any practical situ-
~ = ) (6.2) ation, enormously larger than the rod size. Thus, for all prac-
Fﬁ VL") t tical purposes of theommonmechanical engineering, ther-
dt t mal noise has insignificant effects on the buckling dynamics.

There the buckling dynamics goes on exactly as discussed in

Thus, at long timeg>m/I", the inertial term is irrelevant Secs. lll and 1V, as if there is no noise at all.
provided the viscous friction is preserdi#0. That is, the On the other hand, in prospective technologies at borders
addition of the mass term would not qualitatively affect thewith polymer physics, such as the emerging molecular nano-
coarsening exponents and other features of the long timechnology, the aforementioned noise effects might be inter-
behavior we found in Secs. Il and IV. We checked thisesting due to the use of molecular rods with relatively small
feature by numerically solving the equation of motion bothbending rigidity x (compared to common mechanical engi-
with and without the inertial term included. neering standardls There, for example, for small enough

This irrelevance of the inertial effect holds provided thestrainse, one can easily encounter the floppy chains with
viscous friction ispresent It is thus also interesting to see N>\, =¢l,. Because of the potential interest for fine
what would be the behavior with purely Newtonian chaintechnologies, we also examined such chains by simulating
dynamics[Eq. (6.1)] with no external friction and no noise their noisy Langevin buckling dynami¢&q. (3.1)]. Thus in
(say, buckling dynamics in vacuum or a very dilute me-Fig. 6 we depict the behavior of the average internal steain
dium). This problem will be addressed elsewhere. versus time. We see thé&t) actually changes its sign from a

Let us go back to our Langevin dynamidsg. (3.1)] fora  negative value at short times<t,,,, to a positive value at
chain in a viscous mediuwith noise. In previous sections, long timest>t,,... At long times,(e) saturates to a positive
we ignored the thermal noise term. One may thus ask thealue eqq[(e)~ e, for t>t,,,; see Fig. 6. Apparently, by
qguestion whether the thermal noise iselevant for the  looking atlocal quantities, such a&), the chain approaches
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FIG. 6. Evolution of the internal straige) vs timet for the ME 15 /
t
1

which the internal strain changes from a negative to a positive value 107

floppy chain with a relatively small time scalg,, (=3000 herg¢ at *
due to thermal noise.
10 4

0 10 100 1000 10000

its thermal equilibriumfor t>t.,... On the other hand, by 0

looking at essentially nonlocal quantities suchvad) de-

picted in Fig. 7a), we see that the chain roughness continues

to grow for t>t,... As discussed in the Appendix, fdr FIG. 7. (8 The time evolution of the chain transverse width

>1tax, the system can be described by a noisy version of Equ(t) for the floppy chain in Fig. @), w(t)~t** for both t <t

(4.7 with e replaced with gositiveinternal straine,. That ~ (~3000 herg and t>t,. (b) The time evolution of the chain

is, wavelength\ (t) for the same floppy chain as in Fig(8, A(t)
~tY4for t<tpay. FOrt>tnm the growth ofA(t) slows down.

10000 20000 30000 40000 50000 60000
t

=3

IR Ry 'R
— =0 T_K#ﬂL 7(n,t), (6.6)  walk character of a directed polymer. This can be qualita-
tively explained by invoking Eq(6.6), which can be solved

whereo is an entropically generated chain tension, given byexactly. For the displacement-displacement difference corre-
lation function, it yields

(6.7 K(r,t)~r (6.9

. . for r<&(t)=(ot/TYY2=N__(tit . )Y¥2~t12 and
Here\ ,~\nax at low temperatures, as discussed in the Ap- &(t)=(at/T) ma{tmax)

pendix. By using Eq(6.6), it can be easily shown that the K(r,t)~2w(t)~ V&(t) ~tV4 (6.9
chain roughnessv(t) continues to grow as'* even fort

>tmnax until it reaches its equilibrium vaIU\iyeq~(N)1’2 at  for r>£(t). Thus, in contrast to the strain dominated regime,
another time scaleeq=tma>(N/)\max)2, which is long if N where we had, for<\, K(r,t)~r“ with «=1 [see Fig. 3
>Nmax- Simulation results in Fig. (38) document such be- and Egs.(3.13 and(3.14)], in the noise dominated regime
havior of w(t), with w(t)~t¥* for tp,<t<ty,. Fort one finds, forn<r<¢, the random walk behavioK(r,t)
>tmax, the internal straife) is positive and the growth of ~r® with a~0.5. Figure 9, from our simulations of floppy
w(t) for t>ta is driven bythermal fluctuationgthermal  chains, documents this behavior.

roughening. This is in contrast to the growth af(t) for t As noted before, for common mechanical engineering, the
<tmax Which is driven by a negative internal strain, as dis-length scale\ .4 is always much larger than sizésof re-
cussed in Secs. lll and IV. Fdi>t,,,, the growth of\(t) alistic systems. There, the noisy behavior described above is
slows down, as documented in FiglbY. Figure &) gives not accessible. Rather, one has just the coarsening driven by
the slope-slope correlation functidl{r,t) in this noise negative internal strains inducing a growth)éccording to
dominated regiméas before, in Sec. IlI, its first zero was \~tY* It lasts until a long time scale~N'"e=N?*) when
used to extrack (t) ]. By comparing this correlation function the wavelength becomes comparable to the rod’sNjznd
with strain dominated correlations in Fig(a, it is obvious  one recovers the usual picture of a buckled rod. Interestingly,
that, in the noise dominated regime, the chain configurationthis noiseless coarsening dynamics of the buckling instability
must be more disordered than in the strain dominated regimis still apparently stochastic. Chain nonlinearities and the
when the chain was periodic liK€&ig. 1(b)]. In fact, a direct presence of many degrees of motigather than noigecon-
look at a chain configuration in the noise dominated regimespire to produce essentialthaotic chain dynamics. We re-
confirms this; see Fig.(B). The chain profile has the random call that the only randomness that was used in the simula-

ot 7 on?

o=Bey=

etk
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(a) 0.20 VIl. SUMMARY AND DISCUSSION OF RELATED WORK
015 To summarize, here we have elucidated, in depth, the na-
T G ture of the dynamics associated with the classical Euler in-
e stability. It is a coarsening process characterized by a grow-
0 ) N !
oo | 1,(¢=10000) ing structqral length scalen(t)~t"c. At long times

r (£=50000) (~LY"¢) this length scale becomes comparable to the rod
0.00 lengthL, and one recovers the usual picture of a buckled rod.
\\f’. We reveal that the dynamics of Euler instability has the na-

005 - - " - . ture of a phase ordering procd8s9]: It is a stochastic coars-

ening process statistically self-similar in time. As in phase
ordering phenomena, stochastic coarsening dynamics here
occurs even in the absence of any noise, as a result of chain
nonlinearities and the presence of many degrees of freedom.
Associated with this coarsening process isghawing trans-
verse widthof the rodw(t)~t#, with 8=n,. Such a growth
of w(t), with B8=n,, is similar to the interfacial coarsening
process recently found to occur in molecular beam epitaxy
(so-called pyramidal or mound growfi0—12). There, as
well as in the present elastic problem, the evolving manifold
(surface or ling develops a nonzero slope with respect to the
¥ | wo initial straight configuration. The chain slope plays the role
| of the order parameter in this phase ordering phenomenon.
0 10 200 300 400 500 It is interesting to note that the growth of the chain wave-
* length in Eq.(4.15 is similar to the well knowr power law

FIG. 8. (a) The slope-slope correlation functiotg(r,t) att of the subdiffusive spreading of a transverse disturbance
=10000 and 50 000 for the floppy chaiil) Time evolution of the along a flexible chain in thabsenceof external tension, as
floppy chain. We depict 550 out of 10 000 molecules comprisingobtained within linearized elastohydrodynami¢8]; see Eq.
the chain. To depict undulatioi®(n,t) clearly, we used different (4.8), with e =0. The spreading process is associated with a
scales for the transver§q=(Ry 'R,) and longitudinaR, =R, mo-  decayof transverse chain displacements that justifies the use
lecular coordinates. of the linearized theory at long times. On the other hand,
buckling is associated with thgrowth of chain transverse
displacements that leads tdeeakdownof linearized theory
see Sec. Y. Thus the similarity of chain buckling dynamics

t=5000

®

t=20000

t=100000

tions of Sec. lll was smallinitial random transverse

dis_placements arouqd a straighF unstable molecular C(_)nfig ind the linearized elastohydrodynamicsiésidental This is
ration (to enable chain start movingsubsequently, buckling - ey jjiystrated by our recent work on the buckling dynamics
instability, due to negative internal strains, amplifies the dis+ tethered membrandd]: As in polymers, the Rouse dy-
placements and produces a chaotic coarsening described i3mics of tethered membranes exhibits the standaaiver
Secs. lll and IV. law for the spreading of a disturbance. Nonetheless, in the
buckling regime, the coarsening exponent for tethered
membranes is not. Rather, \(t)~t" with n,=+;, for

10 - Rouse buckling dynamics of tethered membrali@s This
K(e.) —— =200 difference arises due to the development of ridge networks
’ o 230000 across buckling membrangg], as noted above in Sec. V.

o 17100000 We note that & power law was found in Ref15], in the

straightening process of flexible polymers under tension ap-
plied to one end of the polymer. It has been found that the
size of the straightene@tense region grows, under some
conditions, by a power law, with a prefactor different from
that in Eq.(4.19. In fact, the nature of this straightening
power law is different from that of the coarsening law that
applies to buckling dynamics. For example, in contrast to Eq.
(4.15, the overall form of the straightening power law de-
pends on the initial chain configuration, e.g., on the initial
chain temperatur¢l5|. Furthermore, the straightening dy-
namics exhibiting the} power law occurs even for zero
FIG. 9. The displacement-displacement difference correlatiofPe€nding rigidity [15], in contrast to buckling dynamics, in
functions K(r,t) for the floppy chains at various times. As dis- Which chain bending rigidity plays the central role. Even
cussed in the textK(r,t)~r® with a=3, for r<g(t)~t'2 with bending rigidity included into the dynamics, the
whereas K(r,t)=v2w(t)~[£(t)]*~t¥* for r>¢£(t), as docu- straightening remains substantially different from buckling.
mented in Fig. @). Numerically,a~0.5. The buckling has the character of a phase ordering process,

1 10 100
r
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with the chain slope as the order parameter. Straightening ostrain [Eq. (4.3)] along the chain. By inserting this phonon
the other side does not have such a character. configuration into Eq(Al), we obtain

B 1 (N 1R\ %] 2
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APPENDIX as the effective free energy functional for chain undulations

Here we discuss Eq6.6) and related issues of Sec. VI. Rr(n). The first term in Eq(A7) is aninfinite range inter-
For this purpose, here we discuss the equilibrium statistica®ction between chain undulations which is mediated by

mechanics of the flexible chain of molecules with the elastid?honons. Its presence makes E47) similar to the Kac
energy as in Eq94.4)—(4.6), that is, model of ferromagnets with infinite range exchange interac-

tions[19]. Here, as in the case of the standard Kac model,
. N [B o' 1[dRy 212 the presence of the infinite range interactions makes the equi-
U(RT,u’)=f dn 5 —e+ a_n+ 2\ on librium statistical mechanics exactly solvable in the thermo-
0 dynamic limitN—c. By treating Eq(A7) in a fashion simi-
x| PRy 2 lar to that used for the Kac model, we find that the
+ E(W_) ] (Al)  equilibrium correlations of chain undulatiopB(n)] can be
obtained from an effective Hamiltonian of the form

Here, as in Sec. IVy'(n) are phonons, Wherefsr(n) is a o IR,
d—1=2 component field of chain transverse displacements Ho(Ry) = —f dn(—
[for generality, we consider a chain fluctuating in a 2 Jo an
d-dimensional spade Next consider the partition function
associated with EqA1),

2+Kde —2—82§T2 A8
EO n an ( )

Here o is the equilibrium chain tension, which satisfies the
equation

zzf DRTJ Du’e” YRnu/kgT, (A2) 1[oRr)|°
oc=B(e)p=B| —e+ = : (A9)
0

2\ on
As Eq. (A1) is harmonic in the phonong’, they can be
integrated out of the partition functidi2) exactly, yielding ~ where the average is with respect ly(Ry) in Eq. (A8).
Z~ [DRye~YeiRkeT \where U .«(Ry) is obtained by mini- This yields a self consistent equation for the chain tension of

mizing Eq. (AL) over the phononsi’(n) for fixed Ry(n). " '™

The conditiondU/éu’ =0 yields the equation d—1 [ dq KkgT
L o=B| —¢+ 5 fz— o2l (A10)
oo O] a1 aRT) A3 mOoTKg
“on| % an "2\ on Once Eq(A10) is solved foro, the equilibrium value of the
internal straing.q=(e), is from Eq.(A9),
From Eq.(A3),
g
' 1R " €eq=(€)o=5" (A11)
AR (Ad)

By performing the momentum integral in EGA10), we ob-
where C is an integration constant to be fixed from the tain the equation
boundary conditions. In this case, they ar&(n=0)=0 and

"(n=N)=0 (fi hai implyi d—1 kgT
u’(n=N)=0 (fixed chain ends implying o—Bl e+ . B ' (A12)
Nd o’ =0 A5 o
0 “on =% (AS) to be solved foro. By solving Eq.(A12), we find the chain
tension in the form
as already discussed in Sec. IV, see E41). From Egs.
K
(A4) and (A5), U:Beeq:)\_z_ (A13)
1 (N 1[oRr\? 7
C= NJ; dnl —e+ 5\ o (A6)  Here\, is a tension related length scale given by

<
Note that, from Eqs(A3) and (A4), the phonon configura- N = Nmax Or T<Touck, (A14)

tion minimizing the elastic energy yields unifor@onstank (X for T>Tyyck
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In Eq. (Al14), with
4 4
Ama ol (A19 = (Xﬁﬂ 0= Tk%) to. (A21)
whereL , is the free chain persistence length, 0
As discussed in Sec. VI, fdrin range(A20), the coarsening
L :i K (A16) proceeds as in the absence of the thermal ndise(), with
PTd—1 kgT’ A(t) ~tY4 Fort<t,,., the coarsening is driven by the nega-
tive internal strain(e),. The internal straife), changes its
as in Sec. VIX in Eq. (A14) is given by sign att=t. and, at long times, approaches its positive
s 13 equilibrium valuee. given by Eq.(A13). Such an evolution
~:<i K ) (A17) of (e), is illustrated by our simulations; see Fig. 6. Ror
d—1 BkgT >tmax, the chain approaches its thermodynamic equilibrium,

) ) o . and its dynamics can be qualitatively described by the lin-
Thuekin Eq. (A14) is a characteristic “buckling” temperature earized noisy Langevin dynamics in E.6), which brings
scale, given by the system into the equilibrium state governed by the effec-

tive Hamiltonian in Eq(A8). Fort>t.,, the internal strain
s Toue= VKBS, (A19 18 e

(e), is positive, and the chain has a roughening dynamics
The significance of the temperature scdlg, for the

driven by thermal noise. This late time dynamits€,,,) IS
noisy buckling dynamicgSec. V) can be seen by forming essentially that of directed polymers under an entropically
the ratio\ nax/Ng, Wherel is the initial ((=0) value of the

generated positive tensian as in Eq.(6.6). Simulations of

chain wavelength o= const/x/Be; see Eq.(4.10. From the full nonlline.ar noisy Langevin dynami¢gq. (3.1)] cor-
Egs.(A15) and (A16), one has roborate this picturésee Sec. \jl
' ' Finally, we note that the range of time scales in &R0)

M max Touck is, by Eq.(A21), broad only forT<T,. Only then does
N const—. (A19)  one have a broad range of time scales in @g0), in which

0 the buckling dynamics is driven by negative internal strains
Thus, forT<Tpyex ONe hask maho. In terms of the noisy and goes as at=0, with A (t)~t**, as discussed in Secs. Ill
chain dynamics of Sec. VI, foT <Tp, one has a broad and IV. From Eq(A21), this zerof-like regime should dis-
range of time scales exhibiting the zero-temperature bucklingPpear forT=Ty,. Above Ty, the time scalety,y is

dynamics short {na=to), and the subsequent chain dynamics has only
a noisy dominated regime with a positive internal strain and
to<t<tmax: (A20)  thermally induced roughening.
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