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Flexible polymers and thin rods far from equilibrium: Buckling dynamics

Leonardo Golubovic,* Dorel Moldovan,† and Anatoli Peredera
Department of Physics, West Virginia University, Morgantown, West Virginia 26506

~Received 21 June 1999; revised manuscript received 17 September 1999!

We investigate the dynamics of the classical Euler buckling instability of compressed objects such as flexible
molecular chains and thin rods moving in a viscous medium. We find that flexible chains undergo a coarsening
process self-similar in time. They develop a wavelike pattern whose amplitude and wavelength grow in time.
We relate the buckling dynamics to phase ordering phenomena. The role of the order parameter here is played
by the chain slope with respect to the straight initial chain configuration.

PACS number~s!: 82.20.Mj, 05.70.Ln, 46.32.1x, 0.5.40.2a
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I. INTRODUCTION

Solids under externally applied stresses and strains ex
a variety of instabilities. A classical example is the we
known Euler buckling instability of a compressed rod whi
buckles out sideways, if the compressional strain« exceeds
the critical value«c;L22; L is the length of the rod@1,2#.
Buckling of thin rods and plates is a common phenomen
in engineering practice and materials science. Thus, for
ample, elastic and plastic buckling deformations are ma
effects in currently interesting strain induced morphologi
transitions in heteroepitaxially grown semiconductor mate
als @3#. On the other hand, in complex fluid physics, a buc
ling instability of polymerized monolayers of insoluble am
phiphiles adsorbed at the air-water interface was observe
recent experiments@4#. Buckling can be induced in a variet
of ways, for example, simply by applying a compressio
lateral strain to a membrane or a long chain of molecules
practice, strains causing buckling are frequently of therm
origin @5#. Thus protective coating films or oxide scales
metals may buckle due to the difference in thermal exp
sion coefficients between the film and the substrate. R
with hinged ends immersed in a fluid may buckle if the te
perature of the fluid is raised. The temperature jump wo
expand a rod with free ends. It thus effectively induces
uniform compressive strain« in a rod with fixed ends. If«
.«c;L22, such a thermally strained rod will buckle.

Historically, Euler’s buckling instability is the very firs
example of bifurcation phenomena, and a paradigm for s
sequent theories of phase transitions@1#. In itself, buckling
involves a spontaneous symmetry breaking. Thus a c
pressed membrane may buckle either up or down~breaking
of Z2 , Ising-type symmetry!, whereas a compressed thin c
lindrical rod or molecular chain may buckle out sideways
an arbitrary direction~breaking of theO2 symmetry for ro-
tations around the initial direction of the rod!. So, buckling is
a practically interesting analog ofphase ordering phenom
ena. In this paper, we investigate the fundamentals of bu
ling dynamics, that is, we investigatehow initially straight,
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strained molecular chains~or thin rods! evolve into a final
buckled configuration. There is much interesting physics
the dynamics of buckling that has been anticipated rece
@6,7#. Here we document this by molecular dynamics sim
lations of a flexible chain of molecules~‘‘tethered chain’’!.
We find that chain buckling dynamics has the nature
phase ordering processessuch as the growth of ordered do
mains in magnetic systems@8,9# or unstable mound growth
in molecular beam epitaxy@10–12#. The evolving chain’s
profile is like a wave characterized by a wavelength t
grows, via a coarsening process, as a power of time.
amplitude~transverse width! of this wavelike chain pattern
also grows as a power of time. The order parameter of
phase ordering process is the chain slope with respect to
straight initial chain configuration. Our results were brie
outlined in Ref.@6#. Our effort here is a part of broad rece
interest in the dynamics of deformed objects, such as flex
polymers @13# and tethered membranes@14#. The present
work on chain buckling under compression complement
previous study on straightening of polymers under tens
@15#, as well as studies of Goldstein and co-workers on e
tohydrodynamics of filaments@16,17#. Finally, we note that
the buckling dynamics of tethered membranes was also
cently studied by two of us in Ref.@7#.

The balance of our paper is as follows. In Sec. II, w
discuss the model for the flexible molecular chains. In S
III, simulations of the overdamped buckling dynamics
molecular chains are presented. In Sec. IV, we propos
scaling theory of the buckling dynamics. Section V discus
chain buckling dynamics as a phase ordering process. In
VI and the Appendix, we discuss inertial and noise effects
buckling dynamics. A summary and a discussion of rela
work are contained in Sec. VII.

II. MODEL OF FLEXIBLE MOLECULAR CHAINS

We focus our study on thin rods@1,2#, and closely related
long flexible chains of molecules@13#. In Fig. 1~a!, we sche-
matically depict a section of the flexible chain of molecul
that we investigate in this paper. HereRW n is the position of
the nth molecule along the chain. The potential energy
the interactions of the particles along the chain contains
terms: the usual nearest-neighbor bonding term~compres-
sional energy! as well as the next-nearest-neighbor ter
yielding the chain bending energy. That is,
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1704 PRE 61GOLUBOVIC, MOLDOVAN, AND PEREDERA
U5Ucom1Ubend, ~2.1!

with the compressional energy

Ucom5(
n

F~ uRW n112RW nu! ~2.2!

and the bending energy@given by a ferromagneticlike inter
action between the nearest-neighbor bond vectors in
1~a!#

Ubend5
k

2 (
n

~ tWn112 tWn!2. ~2.3!

Here, tWn5(RW n112RW n)/uRW n112RW nu are the bond unit vec
tors, andk is the chain bending rigidity modulus. The bon
ing potentialF(uRW n112RW nu) in Eq. ~2.2! is minimal when
uRW n112RW nu is equal to the bond length51, in the units used
here. We use

F~ uRW n112RW nu!5
B

2
en

2, ~2.4!

whereB is the compresibility modulus, anden is theinternal
strain defined as

en5uRW n112RW nu21. ~2.5!

FIG. 1. ~a! The model of the flexible molecular chain.~b! The
time evolution of the molecular chain. We depict 550 out of 10 0

molecules comprising the chain. To depict undulationsRW T(n,t)

clearly, we used different scales for the transverseRW T5(Ry ,Rz)
and longitudinalRL5Rx molecular coordinates.
g.

Other forms of the bonding potential can be approxima
by Eq. ~2.4! in the vicinity of their minima aten50. As
discussed in the following, the scaling behavior of the bu
ling dynamics is, at long times, dominated by chain config
rations for whichen→0 ast→`. Thus it is good enough to
use the above simple model of the form ofF. In the molecu-
lar dynamics simulations that we present here,B52.0 and
k50.2.

III. MOLECULAR DYNAMICS SIMULATIONS
OF BUCKLING DYNAMICS OF FLEXIBLE CHAINS

OF MOLECULES

The dynamical model studied here is the standard ov
damped Rouse dynamics. This dynamical model basic
corresponds to the motion of the molecular chain in a v
cous medium, described by Langevin equations of motio

G
dRW n

dt
52

]U

]RW n

1hW n~ t !. ~3.1!

HereRW n is the position of thenth molecule along the chain
G is a viscous friction coefficient, andhW n(t) is the thermal
noise. To describe the chain dynamics, let us split the p
tion vector of thenth moleculeRW n into the transverse par
RW T(n,t) ~‘‘undulations’’!, perpendicular to the initial straigh
chain direction, and the longitudinal partRL(n,t), along the
initial chain direction. Chain ends are fixed~hinged!, and at
t50 the chain was in a precompressed, straight configu
tion. That is,RL(n,t50)5(12«)n, andRW T(n,t50)50. In
our simulations, we used a 10% compressional exte
strain; that is,«50.10.

Here we focus on the dynamics without thermal no
~‘‘ zero-temperature’’ dynamics!, i.e., we sethW n(t)50 in Eq.
~3.1!, whereasG50.5. Noise effects are discussed in Se
VI. The only randomness used in this section was small
tial random transverse displacements around the initi
straight unstable equilibrium configuration~to enable chain
start moving!. Subsequently, buckling instability, due t
negative internal strains, amplifies transverse displacem
and produces a chaotic dynamics depicted in Fig. 1~b! from
our simulations. Manifestly, the transverse displacement
the chainRW T(n,t) develop anevolvingwavelike pattern char-
acterized by atime-dependentstructural length scalel(t)
~‘‘wavelength’’!. Thisl(t) grows with time via a coarsening
process. Associated with this coarsening is a growth of
chain’s transverse spreadw(t) ~‘‘width’’ !; see Fig. 1~b!.

We quantified the chain transverse spreadw(t) as the
root-mean-square value of the transverse molecular displ
ments, that is, as

@w~ t !#25^@RW T~n,t !#2&. ~3.2!

Here and in the following,̂¯& stands for the spatial averag
defined for any quantity A(n,t) as ^A(n,t)&
5(1/N)(n51

N A(n,t), for a chain comprised ofN molecules.
We extracted the chain wavelengthl(t) from slope-slope

correlation functions, that have a strong oscillatory charac
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PRE 61 1705FLEXIBLE POLYMERS AND THIN RODS FAR FROM . . .
reflecting wavelike patterns in Fig. 1~b!. We illustrate this in
Fig. 2, that depicts the ‘‘slope-slope’’ correlation functio
defined as

Kss~r ,t !5^VW T~n1r ,t !•VW T~n,t !&, ~3.3!

where VW T(n,t)5RW T(n11,t)2RW T(n,t) is the slope vector.
These correlation functions, as well as the displacem
displacement difference correlation functionsK(r ,t), de-
fined as

K~r ,t !5^@RW T~n1r ,t !2RW T~n,t !#2&1/2, ~3.4!

have an oscillatory character in then dependence~see Fig.
3!.

The chain wavelengthl(t) can be extracted from the firs
zero r 1(t) of Kss(r ,t), via the relationl(t)54r 1(t) @which
can be rationalized by calculatingKss(r ,t) for RW T(n,t) in the
form of a simple harmonic wave with wavelengthl(t)#. We
thus find that, at long times,

w~ t !;tb, l~ t !;tnc ~3.5!

~see Fig. 4!, with the exponentsb and nc both equal to
0.2560.01 from simulations of a three-dimensional chain
N510 000 molecules. Thus, within the accuracy,b5nc
5 1

4 .
We obtain additional insight into this scaling behavior

considering the chain’stotal potential energyU @Eq. ~2.1!#,
which is the sum of the compressional energyUcom and
bending energyUbend. Figure 5~a! depicts the energiesU,
Ucom andUbend vs time. We see that, at long times,

FIG. 2. ~a! The slope-slope correlation functionsKss(r ,t) vs r
for various timest. Note that ast→`, Kss(r 50,t)→2« ~50.2 here,
«50.1!. ~b! The self-similarity test forKss(r ,t) shows the collapse
into a single curvey5c(x) of the curves in ~a!. Here y
5Kss(r ,t)/Kss(r 50,t) andx5r /r 1(t), wherer 1(t) is the first zero
of Kss(r ,t).
t-

f

Ubend~ t !;
1

td , Ucom~ t !;
1

th ~3.6!

with d50.50(4) andh51.02(2). Ash.d, the net potential
~elastic! energyU is, at long times, entirely in the bendin
energy,U'Ubend@Ucom; see Fig. 5~a!.

Figure 5~b! depicts the time evolution of the spatial ave
age of the internal strainen(t) @Eq. ~2.5!#. It is important to
notice that^en&,0, indicating that the chain is in a com
pressed state at any timet. By Fig. 5~b! for long times, the
internal strain relaxes as

^en&;2
1

tg , ~3.7!

with g50.51(1). Note that, within the accuracy, one has t
scaling relationh52g, whereh is the exponent of the com
pressional energy decay; see Eq.~3.6!. This can be easily
rationalized asUcom;^en

2&, if one further assumes that^en
2&

;^en&
2.

The most apparent finding from these simulations is
presence of the growing length scalesw(t) and l(t). The
typical length scale for chain transverse displaceme
RW T(n,t) is w(t). Likewise, the typical length scale forn is

FIG. 3. ~a! The time evolution of the displacement-displaceme
difference correlation functionsK(r ,t) of the flexible molecular
chain. ~b! The rescaled displacement-displacement difference
relation functions. All of the correlation functions collapse into
single curvey5 f (x). Here y5K(r ,t)/Kmax(t) and x5r /r max(t),
whereKmax(t) is the maximum value ofK(r ,t) which occurs atr
5r max(t).
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1706 PRE 61GOLUBOVIC, MOLDOVAN, AND PEREDERA
the chain wavelengthl(t), which reflects the periodiclike
structure@see Fig. 1~b!# of RW T(n,t) versusn with the period
l(t).

There is an apparentself-similarity we see in the chain
dynamics. Indeed, from Fig. 1~b!, we infer that chain con-
figurations obtained atdifferentlong times look~statistically!
thesame, provided the transverse displacementsRW T(n,t) are
expressed in units ofw(t) @i.e., in terms of the ‘‘dimension-
less’’ quantityRT(n,t)/w(t)#, andn is expressed in units o
l(t) @i.e., in terms of the dimensionless quantityn/l(t)#.
Qualitatively speaking, one can say that the chain configu
tions depicted at various times in Fig. 1~b! are all of the form

RT~n,t !

w~ t !
'sinS 2p

n

l~ t ! D ; ~3.8!

that is, y5RT(n,t)/w(t) is a wavelike function of x
5n/l(t), with the periodDx51. Statistical self-similarity
can be checked by using the slope-slope correlation fu
tionsKss(r ,t) obtained at various timest @see Fig. 2~a!#, and
the displacement-displacement difference correlation fu
tions K(r ,t) @see Fig. 3~a!#. In terms of the displacement
displacement difference correlation functionK(r ,t) @Eq.
~3.4!#, which, in essence, measures the typical value
uRW T(n1r ,t)2RW T(n,t)u, the statistical self-similarity mean
that the typical value of

FIG. 4. ~a! The time evolution of the transverse widthw(t) of
the chain. The log-log plot gives the scalingw(t);t0.25. ~b! The
time evolution of the first zero crossingr 1(t) of the slope-slope
correlation functionKss(r ,t). As discussed in the text,r 1(t) is one
quarter of the chain wavelengthl(t). The log-log plot gives the
scalingl(t);t0.25. The linear plot indicates thatl(t) starts from a
nonzero value att50 as discussed in the text.
a-

c-

c-

f

URW T~n1r ,t !

w~ t !
2

RW T~n,t !

w~ t !
U ~3.9!

can be expressed as a function ofr /l(t). Therefore,

K~r ,t !

w~ t !
5 f S r

l~ t ! D ~3.10!

for long timest. This self-similarity can be tested by plottin
the rescaled quantityy5K(r ,t)/w(t), with K(r ,t) obtained
at various times, versus the rescaled quantityx5r /l(t). If
the self-similarity holds, all curves thus obtained shou
‘‘ collapse’’ into a single scaling functiony5 f (x). We did in
fact test this, by using the correlation functionsK(r ,t) ob-
tained at different times in Fig. 3~a!. Already from Fig. 3~a!,
we see that these correlation functions, though obtaine
different times, look similar in shape and may collapse int
single curve after a rescaling. For convenience, we did
rescaling by usingy5K(r ,t)/Kmax(t) andx5r /r max(t). Here
Kmax(t) is the maximum value ofK(r ,t) which occurs at
some value ofr 5r max(t). If the self-similarity holds, all the
curves thus constructed should collapse into a single cu
y5F(x), whereF is a scaling function@F is identical tof in
Eq. ~3.10! up to a simple rescaling#. It appears that this is the
case, as documented in Fig. 3~b! @note thatF(1)51, by the
definition of the rescaling procedure#. Therefore, the statisti-
cal self-similarity of the flexible chain buckling dynamics
well confirmed by our simulation results.

An additional check of the self-similarity can be made
considering the slope-slope correlation functions@Eq. ~3.3!#
obtained at different times; see Fig. 2~a!. The slope vector

FIG. 5. ~a! The time evolution of the chain total potential energ
U5Ubend1Ucom, bending energyUbend and compressional energ
Ucom. ~b! The time evolution of the internal straine(t). Note that
e(t),0 for all timest.
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PRE 61 1707FLEXIBLE POLYMERS AND THIN RODS FAR FROM . . .
VW T(n,t)5]RW T /]n has the characteristic valuev(t)
5w(t)/l(t), inferred by looking at a typical chain configu
ration in Eq. ~3.8!. In the spirit of the statistical self
similarity, correlation of VW T(n,t)/v(t) with VW T(n
1r ,t)/v(t) should be a function ofr /l(t) only; that is,

Kss~r ,t !

v2~ t !
5 f ssS r

l~ t ! D , ~3.11!

where f ss(x) is a scaling function. In particular,

Kss~r 50,t !5^~VW T!2&5K S ]RW T

]n
D 2L 5v2~ t ! f ss~0!.

~3.12!

From the simulations, we see thatKss(r 50,t) saturates to a
finite value at long times@see Fig. 2~a! at r 50#. This feature
of the slope-slope correlation functions can be rationalize
terms of Eq.~3.12! asv(t)5w(t)/l(t), andw(t) andl(t)
are both;t0.25 at long times. This is further discussed i
Sec. IV, where we findKss(r 50,t)5^(]RW T /]n)2&'2« for
«!1, at long times. Thus the self-similarity ofKss(r ,t) is
simply the statement that, at long times, all the curves in F
2~a! are identical up to a time-dependent rescaling along
r axesonly. The dynamics of correlationsKss(r ,t) of the
slope vectorVW T5]RW T /]n is thus identical to the dynamic
of order parameter correlations in the phase ordering p
cesses@8,9# with the chainslope VW T playing the role of the
order parameterhere. Indeed, the scaling form ofKss(r ,t) in
Eq. ~3.11! is equivalent to the basic scaling form of the ord
parameter correlations in the phase ordering processes@8,9#.
Figure 2~b! gives the basic test of the self-similarity o
Kss(r ,t), as suggested in Eq.~3.11!. There we plot y
5Kss(r ,t)/Kss(r 50,t) vs x5r /r 1(t)54r /l(t) @as before,
r 1(t)5l(t)/4 is the first zero ofKss(r ,t)#. We see that the
slope-slope correlation functions obtained at various tim
indeed collapse into a single scaling functiony5c(x)
@c(0)51 andc(1)50, by the construction of the rescalin
procedure#. Moreover, as to standard phase ordering p
nomena, our scaling functionc(x) has a pronounced osci
latory character reflecting the presence of the struct
length scalel(t).

Our simulations thus elucidate the nature of the class
Euler instability dynamics of a precompressed rod. It is
coarsening process characterized by a growing struct
length scalel;tnc. At long timest;L1/nc, this length scale
becomes comparable to the rod lengthL, and then one recov
ers the usual picture of a buckled flexible chain. We find t
the dynamics of the buckling instability has the nature o
phase ordering process@8–11#. It is a stochastic coarsenin
process statistically self-similar in time. As in phase order
phenomena, stochastic dynamics here is produced by c
nonlinearities and the presence of many degrees of free
rather than by thermal noise, which we switched off in t
simulations presented in this section. Associated with
coarsening process is the growing transverse width of the
w(t);tb, with b5nc . Such a growth ofw(t) with b5nc
makes buckling dynamics strikingly similar to the interfac
coarsening processes recently found to occur in molec
beam epitaxy~MBE! ~so called pyramidal or mound growt
in

.
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@10–12#!. In the MBE growth as well as in the present elas
problem, the evolving manifold~surface or line! develops a
nonzero slope with respect to the initial straight configu
tion. The chain slope plays the role of the order paramete
this phase ordering process.

The similarity of the present problem to the MBE pyr
midal growth is also reflected in the form of th
displacement-displacement difference correlation funct
K(r ,t). This function behaves similarly to the height-heig
difference correlation function during the pyramidal growt
Indeed, forr !l(t), we see from Fig. 3 thatK(r ,t) is nearly
a linear function of r. That is,

K~r ,t !;r a, ~3.13!

with a51. On the other hand, forr @l(t) the correlation
function K(r ,t) saturates, in an oscillatory fashion, to th
value K(r 5`,t)5&w(t). Features such asa51, and an
oscillatory behavior ofK(r ,t), also occur in the MBE pyra-
midal growth@10–12#.

Let us discuss the numerical prefactor in Eq.~3.13!. By
writing RW T(n1r ,t)2RW t(n,t)'r @]RW T(n,t)/]n#5rVW T(n,t)
@r !l(t)#, and from Eqs.~3.3! and ~3.4! we have

K~r ,t !'@Kss~r 50,t !#1/2r 5K S ]RW T

]n
D 2L 1/2

r ~3.14!

for r !l(t). As noted above@see Eq.~3.12!#, the prefactor of
r in the Eq.~3.14! saturates at long times to a constant.
fact, in Sec. IV, we show thatKss(r 50,t5`)5K(«), with
K(«)>2«, for «!1. Thus, forr !l(t),

K~r ,t !'AK~«!r . ~3.15!

On the other hand, by using the scaling forms~3.10! and
~3.11!, for r !l(t),

K~r ,t !'C
w

l
r ; ~3.16!

hereC5 f 8(0)5Af ss(0) is a numerical constant. From Eq
~3.15! and ~3.16!, w/l5@AK(«)/C#. As K(«)>2« for «
!1 ~see Sec. IV!, one hasVT5]R' /]n'w/l;A«, for a
small «.

In Sec. IV, we will address the dynamics of the bucklin
instability by a scaling-type analysis. This yields, for e
ample, the coarsening exponentsnc5b50.25 for the chain
buckling dynamics in the presence of the viscous friction,
agreement with the results of the numerical simulations
this section.

IV. SCALING THEORY OF THE BUCKLING DYNAMICS
OF FLEXIBLE CHAINS OF MOLECULES

To explain our numerical results qualitatively, let us a
dress the chain motion by a scaling-type analysis. To p
ceed, we split the position vector of thenth moleculeRW (n,t)
into one longitudinal componentRL(n,t) and two transverse
componentsRW T(n,t) ~‘‘undulations’’!, along and perpen-
dicular to the initial straight chain configuration, respe
tively. Next we introduce phononlike degrees of freedo
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1708 PRE 61GOLUBOVIC, MOLDOVAN, AND PEREDERA
This can be done, for example, by expanding around
relaxedstraight chain configuration, by writingRL(n,t)5n
1u(n,t). Alternatively, by expanding around the initia
precompressedstraight configuration, we obtain another e
pressionRL(n,t)5(12«)n1u8(n,t), where« is the exter-
nal compressional strain~for example,«50.10 in the simu-
lations results of Sec. III!. As the chain has fixed ends, w
have the boundary conditionsRL(N,t)5(12«)N and
RL(0,t)50, or, in terms of theu8 phonons,u8(n,t)50 for
n5N andn50. This can, alternatively, be expressed as

K ]u8

]n L 50, ~4.1!

where, as in Sec. III, the average^¯& indicates the spatia
average, defined for the quantityA(n,t) as ^A(n,t)&
5(1/N)*0

NA(n,t)dn. In contrast tou8(n,t) phonons, the
u(n,t) phonons satisfy a more complicated boundary con
tion at n5N, of the formu(N,t)52«N, asu(n,t)52n«
1u8(n,t). Thus^]u/]n&52«. In terms of the phonons an
undulations, the internal strain~2.5! has the form

e~n,t !'
]u

]n
1

1

2
S ]RW T

]n
D 2

~4.2!

for small external strains«!1 considered here. Alterna
tively, as]nu52«1]nu8,

e~n,t !'2«1
]u8

]n
1

1

2
S ]RW T

]n
D 2

. ~4.3!

In terms of phonons and undulations, the chain elastic po
tial energy reduces to

U5Ucom1Ubend, ~4.4!

with

Ucom5E
0

N

dn
B

2
„e~n,t !…2 ~4.5!

and

Ubend5E
0

N

dn
k

2
S ]2RW T

]n2 D 2

. ~4.6!

Next, let us focus on undulationsRW T(n,t), which, by Eqs.
~3.1!, ~4.4!, ~4.5!, and~4.6!, satisfy

G
]

]t
RW T~n,t !52

dU

dRW T~n,t !
5

]

]n
Be~n,t !

]

]n
RW T~n,t !

2kS ]

]n
D 4

RW T~n,t !; ~4.7!

here, as in Sec. III, we switched off the thermal noise. At
early stage of the chain evolution, Eq.~4.7! can be linear-
ized, by approximating Eq.~4.3! with e(n,t)'2«. There-
fore,
e

i-

n-

e

G
]

]t
RW T~n,t !'2B«

]2

]n2 RW T~n,t !2kS ]

]nD 4

RW T~n,t !.

~4.8!

For Eq. ~4.8!, we find harmonic wave modes of the form
RT(n,t);Re exp„v(k)t1 ikn…, with Gv(k)5B«k22kk4.
Thus all the modes withk,AB«/k are unstable and will
grow exponentially in time. The dominant, most unstab
mode @maximizing v(k)# hask5k05AB«/2k. The ampli-
tude of this mode grows exponentially in time as exp(t/t0),
with

t05
1

v~k0!
5G

B2«2

4k
. ~4.9!

The wavelength of the fastest mode,

l05
2p

k0
52pA2k

B«
, ~4.10!

corresponds to the chain wavelength observed in our si
lations at the early stage of the evolution@see Fig. 4~b! at t
'0; the initial wavelength is different from zero#. During the
early stage,t!t0 , the internal strain is negative@e(n,t)
'2«, as noted above#. It will remain negative even during
the subsequent, late stage fort@t0 , as discussed in the fol
lowing @see Eq.~4.19!#, and already documented by th
simulations in Sec. III; see Fig. 5~b!. Thus the buckling dy-
namics is, generally, driven by negative~compressional! in-
ternal strains. As the times goes on, the linearized the
~4.8! breaks down, and the nonlinear equation of moti
~4.7! @with e(n,t) as in Eq. ~4.3!# must be considered to
explain the most interesting results obtained from the sim
lations of Sec. III, such as thepower-low growthof l(t) and
w(t) at long time scales. The early time behavior, w
l(t)'l0 and w(t);exp(t/t0), is, at long timest@t0 , re-
placed by a power-law growth of the forml(t);tnc and
w(t);tb.

To explain our numerical simulation results for the exp
nentsnc andb of these power laws, we address the nonline
equations of the chain motion by a scaling-type analysis.
based on the observation that the only characteristiclong
length scalesat long time tarel(t) andw(t), as suggested
by the simulations of Sec. III, in particular by the collapse
the correlation functions@see Fig. 2~b! and 3~b!#. These
simulations suggest that the typical scale forRT is w, there-
fore, RT;w. Likewise, the typical scale forn is l, so n
;l and ]/]n;1/l. Thus, for example, ]RT /]n
;w(t)/l(t), for a typical configuration of the chain, a
clearly suggested by our simulations@see Fig. 1~b!#. Like-
wise, we have

G
]RT

]t
;G

w

t
~4.11!

for the typical value of the left hand side~LHS! of the non-
linear equation of motion~4.7!, whereas the bending term o
the right hand side~RHS! of Eq. ~4.7!, k(]/]n)4RT , behaves
as
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~bending term!;k
w

l4 . ~4.12!

Likewise, the first, compressional term on the RHS of E
~4.7! behaves asB(1/l)e(1/l)w. Therefore,

~compressional term!;B
ew

l2 . ~4.13!

To proceed further, we assume that, in the late stage of
evolution, fort@t0 , the compressional and bending terms
the RHS of Eq.~4.7! are of the same order of magnitud
Thus both terms are of the order of the LHS of Eq.~4.7!, that
is, they are of the orderGw/t; see Eq.~4.11!. From Eqs.
~4.12! and ~4.13!, we thus have

G
w

t
5k

w

l4 5B
ueuw
l2 . ~4.14!

From Eq.~4.14!, we see that

l~ t !5S kt

G D 1/4

;t1/4. ~4.15!

Thusl(t);tnc, with

nc5
1

4
50.25, ~4.16!

in perfect agreement with the numerical simulation result
nc in Sec. III; see Fig. 4~b!. From Eqs.~4.9! and~4.10!, Eq.
~4.15! can also be rewritten as

l~ t !5S t

t0
D 1/4

l0 . ~4.17!

Equation ~4.14! also implies that the internal straine
52ueu behaves as

e52
k

Bl2 . ~4.18!

By using Eqs.~4.9!, ~4.10!, and~4.17!, here

e52«S l0

l~ t ! D
2

52«S t0

t D 1/2

. ~4.19!

Thus the internal strain decays as

e;2
1

At
. ~4.20!

Therefore, the early regime, withe'2« for t!t0 is, for t
@t0 , replaced by a power-law decay@Eq. ~4.20!#, of the
negative internal straine that drives the dynamics of th
buckling instability. By Eq.~4.20!, we see that the compres
sional energy@Eq. ~4.5!# Ucom;NBe2/2;e2 decays with
time as

Ucom;
1

t
~4.21!
.

he

r

for t@t0 . These results fore andUcom are in perfect agree
ment with our numerical simulations@see Eqs.~3.7! and
~3.6! and Fig. 5#.

From Eqs.~4.1! and ~4.3!,

^e&52«1
1

2 K S ]RW T

]n
D 2L . ~4.22!

By using here]RT /]n;w(t)/l(t), and Eq.~4.18!, we find
that

2«1
1

2 S w~ t !

l~ t ! D
2

52
k

B„l~ t !…2
, ~4.23!

after dropping inessential numerical factors. From Eq.~4.23!,
we see thatw252«l222k/B, or, ask/B;«l0

2,

w2~ t !52«@l2~ t !2l0
2#, ~4.24!

wherel0 is the wavelength@Eq. ~4.10!# found before for the
early stage of evolution,t!t0 . At long times,t@t0 , one has
l(t)@l0 @see Eq.~4.17!#. Therefore, at these long tim
scales, from Eq.~4.24!,

w~ t !'A2«l~ t !. ~4.25!

As l(t);tnc, it follows, from Eq.~4.25!, thatw(t);tb, with
the exponent

b5nc5
1

4
, ~4.26!

in agreement with the result obtained by simulations in S
III.

The scaling behavior of the bending energy@Eq. ~4.6!#,
numerically obtained in Sec. III@see Fig. 5~a!#, can be now
explained. Note that

^Ubend&5
Nk

2 K S ]2RW T

]n2 D 2L 5NkS w

l2D 2

;t2b24nc.

~4.27!

Thus, from Eq.~4.26!,

Ubend~ t !;
1

At
, ~4.28!

in agreement with our simulations@see Eq.~3.6!, and Fig.
5~a!# at long timest@t0 . We recall that for early timest
!t0 the chain is nearly straight, andUbend is small. As the
time increases, the chain buckles andUbend rapidly ~expo-
nentially with time! increases at early times@see Fig. 5~a!#.
Ubend reaches its maximum att't0 . Finally, for t.t0 the
bending energy slowly decays as 1/At, as documented in the
numerical simulations in Sec. III and derived analytica
above from the scaling theory.

As ^e&→0 at long times, from Eq.~4.22!,

K S ]RW T

]n
D 2L 52« ~4.29!
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for t@t0 . As VW T(n,t)5]RW T /]n, from Eqs.~4.29! and ~3.3!
we find that, at long times, the slope-slope correlation fu
tion ~3.3! saturates at its origin to the value given by

Kss~r 50,t !5S K ]RW T

]n
D 2L 5^~VW T!2&5K~«!, ~4.30!

with K(«)>2« for «!1. This saturation is also clearl
documented by the numerical simulation results forKss(r ,t)
in Sec. III @see Fig. 2~a!#. For t@t0 , slope-slope correlation
function can thus be written as

Kss~r ,t !5K~«!cS r

l~ t ! D , ~4.31!

wherec(x) is a scaling function@c(0)51#, as discussed in
Sec. III.

V. BUCKLING DYNAMICS AS A PHASE ORDERING
PROCESS

In this section, we present an analytic approach to
chain buckling dynamics. Buckling dynamics is a phase
dering process. It can thus be treated by employing ph
ordering theories developed to explain phase ordering
cesses such as the growth of ordered domains in mag
systems@8,9#. In our case, the order parameter is the ch
slope vectorVW T5]RW T /]n, whereas the size of the ordere
domains is comparable to the chain wavelengthl(t): at
scales shorter thanl(t), the chain is nearly straight with
constant slope, whereas at scales longer thanl(t) the chain
curves and the orientational order ofVW T is lost @see Eq.
~3.11! and Figs. 1 and 2#. In the following we use this fact to
develop a phase ordering theory of the buckling dynam
Our approach here is similar to a recent theory of Bray@9#.
Basic ingredients of the phase ordering theory are the foll
ing.

~i! The fact that the chain slopeVW T5]RW T /]n is an order
parameter here, with the correlations of the phase orde
form @9#,

^VW T~n1 ,t !•VW T~n2 ,t !&5V2~`! f ssS n12n2

l~ t ! D , ~5.1!

as found from our simulations@see Eq.~3.11! and Fig. 2#;

here f ss(0)51 and V(`)5A^@VW T(t,n)#2& t5`

5„j(t)/l(t)…t5` @V(`)>A2« for «!1; see Sec. IV#.
~ii ! The energy dissipation formula,

1

G

dU

dt
52 (

n51

N S ]RW n

]t
D 2

, ~5.2!

implied by the equation of motion~3.1!; hereU is the chain
potential energy@Eq. ~2.1!#. In terms of the energy per par
ticle u5U/N, Eq. ~5.2! reads

1

G

du

dt
52K S ]RW n

]t
D 2L . ~5.3!
-

e
r-
se
o-
tic
n

s.

-

g

u is the sum of the bending and compressional contributi
u5ubend1ucom, with ubend5(k/2)(]2RW T /]n2)2 and ucom
5(B/2)e2 @see Eqs.~4.5! and ~4.6!#. By using u'ubend in
Eq. ~5.3!, @as ubend@ucom at long times; see Sec. III#, and

^(]RW n/]t)2&'(dw/dt)2, we find

1

G

d

dt
ubend'2S dw

dt D
2

~5.4!

at long times. To proceed, we employ the phase orde
form of the order parameter correlations in Eq.~5.1!, to find
that

K ]VW T

]n1
•

]VW T

]n2
L 52

V2~`!

l2~ t !
f ss9 S n12n2

l~ t ! D . ~5.5!

From Eq. ~5.5! it follows that the average bending energ
density is

ubend5
k

2 K S ]2RW T

]n2 D 2L 5
k

2 K S ]VW T

]n
D 2L 5C

kV2~`!

2l2~ t !
.

~5.6!

Here C52 f ss9 (0) is a numerical constant. By combinin
Eqs.~5.6! and ~5.4!, with w(t)5V(`)l(t), we find

1

G

d

dt S k

2
•

V2~`!

l2 D52constV2~`!S dl

dt D
2

. ~5.7!

The differential equation~5.7! is easily integrated, yielding
at long times,

w~ t !

V~`!
5l~ t !5constS kt

G D 1/4

. ~5.8!

Thus w(t);l(t);t1/4, as well as @by Eq. ~5.6!# ubend

;1/l2;1/At, in agreement with the corresponding resu
of Sec. IV.

Thus the phase ordering theory explains the observed
ues of the coarsening exponents, both for the buckling
namics of molecular chains and rods~as discussed above!
and for the buckling dynamics of tethered membranes~as
discussed in our work@7#!. We note that the buckling dy
namics of tethered membranes and thin sheets is chara
ized by coarsening exponents that are different from thos
molecular chains and thin rods. The major reason for t
difference is the phenomenon of elastic energy localizati
that occurs in the case of membranes@7#, but does not occur
in the case of flexible molecular chains. In buckling me
branes, the elastic energy is localized on a smaller portio
the net membrane surface, occupied by a network of hig
curved regions~ridges! @7#. In contrast to this, in buckling
chains, there is no such energy localization, that is, the e
tic energy is nearly uniformly distributed along the chains.
fact, Eq. ~5.5! reflects the fact that the chain curvature
nearly uniformly distributed along the chain, i.e., that the
are no highly curved, cusplike turns consuming lar
amounts of bending energy. Under this condition,l(t)
;w(t) is the only length scale of interest here. The cha
bending energy density can be then estimated simply
k(d2R/dn2)2;k(w/l2)2, which is equivalent to Eq.~5.6!
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@by recalling thatw(t)5V(`)l(t)#. Such a simple estimat
breaks down for buckled tethered membranes due to the
mation of ridge networks. There, essentially all elastic
ergy is localized within the ridges’ width (;l2/3), which is
an additional length scale of interest for coarsening proc
In effect, tethered membranes have a different coarse
exponentl(t);tnc, with nc53/11 rather thannc51/4 @7#.
We remark that, for membrane buckling dynamics, me
brane slope correlations also have the phase ordering
@Eq. ~5.1!#. However, for the tethered membrane case,
~asymptotic! scaling functionf ss in Eq. ~5.1! has a cusp at the
origin @i.e., the constantC in Eq. ~5.6! is infinite#. This sin-
gularity reflects the presence of sharp domain walls,
ridges across the surface of membrane~see Ref.@9# for simi-
lar situations in other phase ordering phenomena!. In the
case of molecular chains, collapsed slope-slope correla
functions do not have such a cusp at the origin, as do
mented by our simulations@see Fig. 2~b! at x50#. Thus, for
molecular chains, the constantC in Eq. ~5.6! is finite. Physi-
cally, the absence of this cusp in correlations indicates
absence of highly curved, cusplike turns in the chain profi

VI. INERTIAL AND NOISE EFFECTS

In light of our results, here we first discuss some oth
issues related to the dynamics of buckling instabilities. W
address inertial and noise effects ignored in previous dis
sions, by considering the Langevin equation

m
d2RW n

dt2
1G

dRW n

dt
52

]U

]RW n

1hW n~ t !, ~6.1!

which incorporates the effects of the molecular massm. For
transverse displacementsRT one would then obtain Eq.~4.7!,
with the LHS modified by the inclusion of the inertial ter
m(d2RW T /dt2). In the spirit of the scaling analysis of Sec. I
@see, eg., Eq.~4.11!#, we find

m
d2RT

dt2

G
dRT

dt

;

m
w~ t !

t2

G
w~ t !

t

5
m/G

t
. ~6.2!

Thus, at long timest@m/G, the inertial term is irrelevan
provided the viscous friction is present,GÞ0. That is, the
addition of the mass term would not qualitatively affect t
coarsening exponents and other features of the long
behavior we found in Secs. III and IV. We checked th
feature by numerically solving the equation of motion bo
with and without the inertial term included.

This irrelevance of the inertial effect holds provided t
viscous friction ispresent. It is thus also interesting to se
what would be the behavior with purely Newtonian cha
dynamics@Eq. ~6.1!# with no external friction and no nois
~say, buckling dynamics in vacuum or a very dilute m
dium!. This problem will be addressed elsewhere.

Let us go back to our Langevin dynamics@Eq. ~3.1!# for a
chain in a viscous mediumwith noise. In previous sections
we ignored the thermal noise term. One may thus ask
question whether the thermal noise isirrelevant for the
r-
-

s.
ng

-
m
e
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on
u-

e
.

r
e
s-

e

-

e

coarsening~like inertial effects, as discussed above!? To ad-
dress this question, let us compare, in the spirit of the sca
analysis of Sec. IV, the noise term and the viscous term
Eq. ~3.1!, by forming the ratio

Q5
h2

S G
dRW T

dt
D 2 . ~6.3!

In order for the noise to be insignificant,Q in Eq. ~6.3! must
be small. During the coarsening,dRT /dt;w/t, whereas the
scaling of the noiseh can be found from its correlation
^h(n,t)h(0,0)&52GkBTd(n)d(t). As d(t);1/t and d(n)
;1/n;1/l, we find h2;GkBT/lt. Thus, from Eq.~6.3!,
Q5(GkBT/lt)/(Gw/t)2. By expressingt and w here in
terms of the chain wavelengthl(t), by means of Eqs.~4.15!,
and ~4.25!, we find

Q~ t !5
l~ t !

lmax
, ~6.4!

with

lmax5«Lp5«
k

kBT
. ~6.5!

HereLp is the thermalpersistence lengthof a free chain at
the temperatureT. Thus, as long asl(t)!lmax5«Lp , one
hasQ(t)!1, and the noise can be ignored. The chain d
namics is then qualitatively the same as the one atT50 that
was described in previous sections. Obviously, the condi
Q(t)!1 will be violated at long enough timet.tmax with
tmax defined viaQ(tmax)51, i.e., lmax5l(tmax)5(ktmax/G)1/4

5l0(tmax/t0)
1/4 @see Eqs.~4.15! and~4.17!#. Thus, generally,

if the chain islong enoughwith N.lmax, the noise will be
relevant and start to dominate fort.tmax. Note, however,
that Lp diverges asT→0, and lmax5«Lp may thus easily
exceed the rod sizeN. This is the case in any common me
chanical engineering situation involving rodlike structure
There, the rod persistence lengthLp is, in any practical situ-
ation, enormously larger than the rod size. Thus, for all pr
tical purposes of thecommonmechanical engineering, ther
mal noise has insignificant effects on the buckling dynam
There the buckling dynamics goes on exactly as discusse
Secs. III and IV, as if there is no noise at all.

On the other hand, in prospective technologies at bord
with polymer physics, such as the emerging molecular na
technology, the aforementioned noise effects might be in
esting due to the use of molecular rods with relatively sm
bending rigidityk ~compared to common mechanical eng
neering standards!. There, for example, for small enoug
strains«, one can easily encounter the floppy chains w
N.lmax5«Lp . Because of the potential interest for fin
technologies, we also examined such chains by simula
their noisy Langevin buckling dynamics@Eq. ~3.1!#. Thus in
Fig. 6 we depict the behavior of the average internal strae
versus time. We see that^e& actually changes its sign from
negative value at short timest,tmax to a positivevalue at
long timest.tmax. At long times,^e& saturates to a positive
value eeq@^e&'eeq for t.tmax; see Fig. 6#. Apparently, by
looking at local quantities, such aŝe&, the chain approache
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its thermal equilibriumfor t.tmax. On the other hand, by
looking at essentially nonlocal quantities such asw(t) de-
picted in Fig. 7~a!, we see that the chain roughness continu
to grow for t.tmax. As discussed in the Appendix, fort
@tmax, the system can be described by a noisy version of
~4.7! with e replaced with apositiveinternal straineeq. That
is,

G
]RW'

]t
5s•

]2RW T

]n2 2k
]4RW T

]n4 1hW ~n,t !, ~6.6!

wheres is an entropically generated chain tension, given

s5Beeq5
k

ls
2 ~6.7!

Herels'lmax at low temperatures, as discussed in the A
pendix. By using Eq.~6.6!, it can be easily shown that th
chain roughnessw(t) continues to grow ast1/4 even for t
.tmax, until it reaches its equilibrium valueweq;(N)1/2 at
another time scaleteq5tmax(N/lmax)

2, which is long if N
@lmax. Simulation results in Fig. 7~a! document such be
havior of w(t), with w(t);t1/4 for tmax,t!teq. For t
.tmax, the internal strain̂e& is positive, and the growth of
w(t) for t.tmax is driven by thermal fluctuations~thermal
roughening!. This is in contrast to the growth ofw(t) for t
,tmax which is driven by a negative internal strain, as d
cussed in Secs. III and IV. Fort.tmax, the growth ofl(t)
slows down, as documented in Fig. 7~b!. Figure 8~a! gives
the slope-slope correlation functionKss(r ,t) in this noise
dominated regime@as before, in Sec. III, its first zero wa
used to extractl(t)#. By comparing this correlation function
with strain dominated correlations in Fig. 2~a!, it is obvious
that, in the noise dominated regime, the chain configurati
must be more disordered than in the strain dominated reg
when the chain was periodic like@Fig. 1~b!#. In fact, a direct
look at a chain configuration in the noise dominated regi
confirms this; see Fig. 8~b!. The chain profile has the random

FIG. 6. Evolution of the internal strain̂e& vs time t for the
floppy chain with a relatively small time scaletmax ~'3000 here! at
which the internal strain changes from a negative to a positive v
due to thermal noise.
s

q.

y

-

-

s
e

e

walk character of a directed polymer. This can be qual
tively explained by invoking Eq.~6.6!, which can be solved
exactly. For the displacement-displacement difference co
lation function, it yields

K~r ,t !;Ar ~6.8!

for r !j(t)5(st/G)1/25lmax(t/tmax)
1/2;t1/2, and

K~r ,t !'A2w~ t !;Aj~ t !;t1/4 ~6.9!

for r @j(t). Thus, in contrast to the strain dominated regim
where we had, forr !l, K(r ,t);r a with a51 @see Fig. 3
and Eqs.~3.13! and ~3.14!#, in the noise dominated regim
one finds, forl!r !j, the random walk behaviorK(r ,t)
;r a with a'0.5. Figure 9, from our simulations of flopp
chains, documents this behavior.

As noted before, for common mechanical engineering,
length scalelmax is always much larger than sizesN of re-
alistic systems. There, the noisy behavior described abov
not accessible. Rather, one has just the coarsening drive
negative internal strains inducing a growth ofl according to
l;t1/4. It lasts until a long time scale (;N1/nc5N4) when
the wavelength becomes comparable to the rod’s sizeN, and
one recovers the usual picture of a buckled rod. Interestin
this noiseless coarsening dynamics of the buckling instab
is still apparently stochastic. Chain nonlinearities and
presence of many degrees of motion~rather than noise! con-
spire to produce essentiallychaoticchain dynamics. We re-
call that the only randomness that was used in the sim

e

FIG. 7. ~a! The time evolution of the chain transverse wid
w(t) for the floppy chain in Fig. 8~b!, w(t);t1/4 for both t,tmax

~'3000 here! and t.tmax. ~b! The time evolution of the chain
wavelengthl(t) for the same floppy chain as in Fig. 8~b!, l(t)
;t1/4 for t,tmax. For t.tmax, the growth ofl(t) slows down.
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tions of Sec. III was smallinitial random transverse
displacements around a straight unstable molecular con
ration ~to enable chain start moving!. Subsequently, buckling
instability, due to negative internal strains, amplifies the d
placements and produces a chaotic coarsening describ
Secs. III and IV.

FIG. 8. ~a! The slope-slope correlation functionsKss(r ,t) at t
510 000 and 50 000 for the floppy chain.~b! Time evolution of the
floppy chain. We depict 550 out of 10 000 molecules compris

the chain. To depict undulationsRW T(n,t) clearly, we used different

scales for the transverseRW T5(Ry ,Rz) and longitudinalRL5Rx mo-
lecular coordinates.

FIG. 9. The displacement-displacement difference correla
functions K(r ,t) for the floppy chains at various times. As di
cussed in the text,K(r ,t);r a with a5

1
2 , for r !j(t);t1/2,

whereas K(r ,t)>&w(t);@j(t)#a;t1/4 for r @j(t), as docu-
mented in Fig. 7~a!. Numerically,a'0.5.
u-

-
in

VII. SUMMARY AND DISCUSSION OF RELATED WORK

To summarize, here we have elucidated, in depth, the
ture of the dynamics associated with the classical Euler
stability. It is a coarsening process characterized by a gr
ing structural length scalel(t);tnc. At long times
(;L1/nc) this length scale becomes comparable to the
lengthL, and one recovers the usual picture of a buckled r
We reveal that the dynamics of Euler instability has the
ture of a phase ordering process@8,9#: It is a stochastic coars
ening process statistically self-similar in time. As in pha
ordering phenomena, stochastic coarsening dynamics
occurs even in the absence of any noise, as a result of c
nonlinearities and the presence of many degrees of freed
Associated with this coarsening process is thegrowing trans-
verse widthof the rodw(t);tb, with b5nc . Such a growth
of w(t), with b5nc , is similar to the interfacial coarsenin
process recently found to occur in molecular beam epit
~so-called pyramidal or mound growth@10–12#!. There, as
well as in the present elastic problem, the evolving manif
~surface or line! develops a nonzero slope with respect to t
initial straight configuration. The chain slope plays the ro
of the order parameter in this phase ordering phenomen

It is interesting to note that the growth of the chain wav
length in Eq.~4.15! is similar to the well known1

4 power law
of the subdiffusive spreading of a transverse disturba
along a flexible chain in theabsenceof external tension, as
obtained within linearized elastohydrodynamics@18#; see Eq.
~4.8!, with «50. The spreading process is associated wit
decayof transverse chain displacements that justifies the
of the linearized theory at long times. On the other ha
buckling is associated with thegrowth of chain transverse
displacements that leads to abreakdownof linearized theory
~see Sec. IV!. Thus the similarity of chain buckling dynamic
and the linearized elastohydrodynamics isaccidental. This is
best illustrated by our recent work on the buckling dynam
of tethered membranes@7#: As in polymers, the Rouse dy
namics of tethered membranes exhibits the standard1

4 power
law for the spreading of a disturbance. Nonetheless, in
buckling regime, the coarsening exponentnc for tethered
membranes is not14. Rather, l(t);tnc with nc5 3

11 , for
Rouse buckling dynamics of tethered membranes@7#. This
difference arises due to the development of ridge netwo
across buckling membranes@7#, as noted above in Sec. V.

We note that a1
4 power law was found in Ref.@15#, in the

straightening process of flexible polymers under tension
plied to one end of the polymer. It has been found that
size of the straightened~tense! region grows, under some
conditions, by a1

4 power law, with a prefactor different from
that in Eq. ~4.15!. In fact, the nature of this straightenin
power law is different from that of the coarsening law th
applies to buckling dynamics. For example, in contrast to
~4.15!, the overall form of the straightening power law d
pends on the initial chain configuration, e.g., on the init
chain temperature@15#. Furthermore, the straightening dy
namics exhibiting the1

4 power law occurs even for zer
bending rigidity @15#, in contrast to buckling dynamics, in
which chain bending rigidity plays the central role. Eve
with bending rigidity included into the dynamics, th
straightening remains substantially different from bucklin
The buckling has the character of a phase ordering proc

g
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with the chain slope as the order parameter. Straightenin
the other side does not have such a character.
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APPENDIX

Here we discuss Eq.~6.6! and related issues of Sec. V
For this purpose, here we discuss the equilibrium statist
mechanics of the flexible chain of molecules with the elas
energy as in Eqs.~4.4!–~4.6!, that is,

U~RW T ,u8!5E
0

N

dnH B

2
F2«1

]u8

]n
1

1

2
S ]RW T

]n
D 2G2

1
k

2
S ]2RW T

]n2 D 2J . ~A1!

Here, as in Sec. IV,u8(n) are phonons, whereasRW T(n) is a
d2152 component field of chain transverse displaceme
@for generality, we consider a chain fluctuating in
d-dimensional space#. Next consider the partition function
associated with Eq.~A1!,

Z5E DRTE Du8e2U~RT,u8!/kBT. ~A2!

As Eq. ~A1! is harmonic in the phononsu8, they can be
integrated out of the partition function~A2! exactly, yielding

Z;*DRTe2Ueff(R
W

T)/kBT, whereUeff(RT) is obtained by mini-
mizing Eq. ~A1! over the phononsu8(n) for fixed RW T(n).
The conditiondU/du850 yields the equation

05
]

]n
F2«1

]u8

]n
1

1

2
S ]RW T

]n
D 2G . ~A3!

From Eq.~A3!,

2«1
]u8

]n
1

1

2
S ]RW T

]n
D 2

5C, ~A4!

where C is an integration constant to be fixed from th
boundary conditions. In this case, they are:u8(n50)50 and
u8(n5N)50 ~fixed chain ends!, implying

E
0

N

dn
]u8

]n
50, ~A5!

as already discussed in Sec. IV, see Eq.~4.1!. From Eqs.
~A4! and ~A5!,

C5
1

N E
0

N

dnF2«1
1

2
S ]RW T

]n
D 2G . ~A6!

Note that, from Eqs.~A3! and ~A4!, the phonon configura
tion minimizing the elastic energy yields uniform~constant!
on

o-

al
c

ts

strain @Eq. ~4.3!# along the chain. By inserting this phono
configuration into Eq.~A1!, we obtain

Ueff~RT!5
B

2
•

1

N H E
0

N

dnF2«1
1

2
S ]RW T

]n
D 2G J 2

1
k

2 E
0

N

dnS ]2RT

]n2 D 2

, ~A7!

as the effective free energy functional for chain undulatio
RW T(n). The first term in Eq.~A7! is an infinite range inter-
action between chain undulations which is mediated
phonons. Its presence makes Eq.~A7! similar to the Kac
model of ferromagnets with infinite range exchange inter
tions @19#. Here, as in the case of the standard Kac mod
the presence of the infinite range interactions makes the e
librium statistical mechanics exactly solvable in the therm
dynamic limitN→`. By treating Eq.~A7! in a fashion simi-
lar to that used for the Kac model, we find that th
equilibrium correlations of chain undulations@RW T(n)# can be
obtained from an effective Hamiltonian of the form

H0~RT!5
s

2 E
0

N

dnS ]RW T

]n
D 2

1
k

2 E
0

N

dnS ]2RW T

]n2 D 2

. ~A8!

Here s is the equilibrium chain tension, which satisfies th
equation

s5B^e&05BK 2«1
1

2
S ]RW T

]n
D 2L

0

, ~A9!

where the average is with respect toH0(RT) in Eq. ~A8!.
This yields a self consistent equation for the chain tension
the form

s5BF2«1
d21

2 E dq

2p

kBT

s1kq2G . ~A10!

Once Eq.~A10! is solved fors, the equilibrium value of the
internal strain,eeq5^e&, is from Eq.~A9!,

eeq5^e&05
s

B
. ~A11!

By performing the momentum integral in Eq.~A10!, we ob-
tain the equation

s5BF2«1
d21

4

kBT

Ask
G , ~A12!

to be solved fors. By solving Eq.~A12!, we find the chain
tension in the form

s5Beeq5
k

ls
2 . ~A13!

Herels is a tension related length scale given by

ls>H lmax for T!Tbuck,

l̃ for T@Tbuck.
~A14!



e

lin

a-

ve

m,
lin-

ec-

ics

lly

ins
II

nly
nd

PRE 61 1715FLEXIBLE POLYMERS AND THIN RODS FAR FROM . . .
In Eq. ~A14!,

lmax5«Lp , ~A15!

whereLp is the free chain persistence length,

Lp5
4

d21

k

kBT
, ~A16!

as in Sec. VI.l̃ in Eq. ~A14! is given by

l̃5S 4

d21

k2

BkBTD 1/3

. ~A17!

Tbuck in Eq. ~A14! is a characteristic ‘‘buckling’’ temperatur
scale, given by

kBTbuck5AkB«3. ~A18!

The significance of the temperature scaleTbuck for the
noisy buckling dynamics~Sec. VI! can be seen by forming
the ratiolmax/l0, wherel0 is the initial (t50) value of the
chain wavelength,l05constAk/B«; see Eq.~4.10!. From
Eqs.~A15! and ~A16!, one has

lmax

l0
5const

Tbuck

T
. ~A19!

Thus, forT!Tbuck, one haslmax@l0. In terms of the noisy
chain dynamics of Sec. VI, forT!Tbuck one has a broad
range of time scales exhibiting the zero-temperature buck
dynamics

t0,t,tmax, ~A20!
t-

ol-
.

tt

hy
.

g

with

tmax5S lmax

l0
D 4

t05S Tbuck

T D 4

t0 . ~A21!

As discussed in Sec. VI, fort in range~A20!, the coarsening
proceeds as in the absence of the thermal noise (T50), with
l(t);t1/4. For t,tmax, the coarsening is driven by the neg
tive internal strain̂ e& t . The internal strain̂e& t changes its
sign at t5tmax, and, at long times, approaches its positi
equilibrium valueeeq given by Eq.~A13!. Such an evolution
of ^e& t is illustrated by our simulations; see Fig. 6. Fort
.tmax, the chain approaches its thermodynamic equilibriu
and its dynamics can be qualitatively described by the
earized noisy Langevin dynamics in Eq.~6.6!, which brings
the system into the equilibrium state governed by the eff
tive Hamiltonian in Eq.~A8!. For t.tmax, the internal strain
^e& t is positive, and the chain has a roughening dynam
driven by thermal noise. This late time dynamics (t.tmax) is
essentially that of directed polymers under an entropica
generated positive tensions, as in Eq.~6.6!. Simulations of
the full nonlinear noisy Langevin dynamics@Eq. ~3.1!# cor-
roborate this picture~see Sec. VI!.

Finally, we note that the range of time scales in Eq.~A20!
is, by Eq. ~A21!, broad only forT!Tbuck. Only then does
one have a broad range of time scales in Eq.~A20!, in which
the buckling dynamics is driven by negative internal stra
and goes as atT50, with l(t);t1/4, as discussed in Secs. I
and IV. From Eq.~A21!, this zero-T-like regime should dis-
appear forT.Tbuck. Above Tbuck, the time scaletmax is
short (tmax't0), and the subsequent chain dynamics has o
a noisy dominated regime with a positive internal strain a
thermally induced roughening.
d
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